Part Number Hot Search : 
01900 74HC157 27282401 H60N6 M74VHC1G E39CA 74ACTQ04 LA5668N
Product Description
Full Text Search
 

To Download AD9371BBCZ Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  integrated, dual rf transceiver with observation path data sheet ad9371 rev. a document feedback information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781.329.4700 ?2016 analog devices, inc. all rights reserved. technical support www.analog.com features dual differential transmitters (tx) dual differential receivers (rx) observation receiver (orx) with 2 inputs sniffer receiver (snrx) with 3 inputs tunable range: 300 mhz to 6000 mhz tx synthesis bandwidth (bw) to 250 mhz rx bw: 8 mhz to 100 mhz supports frequency division duplex (fdd) and time division duplex (tdd) operation fully integrated independent fractional-n radio frequency (rf) synthesizers for tx, rx, orx, and clock generation jesd204b digital interface applications 3g/4g micro and macro base stations (bts) 3g/4g multicarrier picocells fdd and tdd active antenna systems microwave, nonline of sight (nlos) backhaul systems general description the ad9371 is a highly integrated, wideband rf transceiver offering dual channel transmitters and receivers, integrated synthesizers, and digital signal processing functions. the ic delivers a versatile combination of high performance and low power consumption required by 3g/4g micro and macro bts equipment in both fdd and tdd applications. the ad9371 operates from 300 mhz to 6000 mhz, covering most of the licensed and unlicensed cellular bands. the ic supports receiver bandwidths up to 100 mhz. it also supports observation receiver and transmit synthesis bandwidths up to 250 mhz to accommodate digital correction algorithms. the transceiver consists of wideband direct conversion signal paths with state-of-the-art noise figure and linearity. each complete receiver and transmitter subsystem includes dc offset correction, quadrature error correction (qec), and programmable digital filters, eliminating the need for these functions in the digital baseband. several auxiliary functions such as an auxiliary analog- to-digital converter (adc), auxiliary digital-to-analog converters (dacs), and general-purpose input/outputs (gpios) are integrated to provide additional monitoring and control capability. an observation receiver channel with two inputs is included to monitor each transmitter output and implement interference mitigation and calibration applications. this channel also connects to three sniffer receiver inputs that can monitor radio activity in different bands. functional block diagram observation rx orx1+ orx1? orx2+ orx2? jesd204b jesd204b jesd204b spi dev_clk_in+, dev_clk_in? ctrl i/f rx_extlo+ rx_extlo? adc lpf rx2 adc lpf rx1 rx1+ rx1? lo generator rf synthesizer rx2+ rx2? decimation, pfir, dc offset qec, tuning, rssi, overload micro- controller spi port adc lpf sniffer rx adc lpf tx_extlo+ tx_extlo? dac lpf tx2 dac lpf tx1 tx1+ tx1? tx2+ tx2? pfir, qec, interpolation gpio auxadc auxdac clock generator external option lo generator rf synthesizer rf synthesizer lo generator external option snrxa+ snrxa? snrxb+ snrxb? snrxc+ snrxc? decimation, pfir, agc, dc offset, qec, tuning, rssi, overload ad9371 14651-001 notes 1. for jesd204b pins, see figure 4. figure 1. the high speed jesd204b interface supports lane rates up to 6144 mbps. four lanes are dedicated to the transmitters and four lanes are dedicated to the receiver and observation receiver channels. the fully integrated phase-locked loops (plls) provide high performance, low power fractional-n frequency synthesis for the transmitter, the receiver, the observation receiver, and the clock sections. careful design and layout techniques provide the isolation demanded in high performance base station applications. all voltage controlled oscillator (vco) and loop filter components are integrated to minimize the external component count. a 1.3 v supply is required to power the core of the ad9371, and a standard 4-wire serial port controls it. other voltage supplies provide proper digital interface levels and optimize transmitter and auxiliary converter performance. the ad9371 is packaged in a 12 mm 12 mm, 196-ball chip scale ball grid array (csp_bga).
ad9371 data sheet rev. a | page 2 of 60 table of contents features .............................................................................................. 1 ? applications ....................................................................................... 1 ? general description ......................................................................... 1 ? functional block diagram .............................................................. 1 ? revision history ............................................................................... 2 ? specifications ..................................................................................... 3 ? current and power consumption specifications ..................... 9 ? timing specifications ................................................................ 11 ? absolute maximum ratings .......................................................... 13 ? reflow profile .............................................................................. 13 ? thermal resistance .................................................................... 13 ? esd caution ................................................................................ 13 ? pin configuration and function descriptions ........................... 14 ? typical performance characteristics ........................................... 17 ? 700 mhz band ............................................................................ 17 ? 2.6 ghz band .............................................................................. 27 ? 3.5 ghz band .............................................................................. 37 ? 5.5 ghz band .............................................................................. 47 ? theory of operation ...................................................................... 57 ? transmitter (tx) ......................................................................... 57 ? receiver (rx) ............................................................................... 57 ? observation receiver (orx) ..................................................... 57 ? sniffer receiver (snrx) ............................................................. 57 ? clock input .................................................................................. 57 ? synthesizers ................................................................................. 58 ? serial peripheral interface (spi) interface .............................. 58 ? gpio_x and gpio_3p3_x pins ............................................ 58 ? auxiliary converters .................................................................. 58 ? jesd204b data interface .......................................................... 58 ? power supply sequence ............................................................. 59 ? jtag boundary scan ................................................................. 59 ? outline dimensions ....................................................................... 60 ? ordering guide .......................................................................... 60 ? revision history 11/2016rev. 0 to rev. a changes to table 1 ............................................................................ 6 changes to table 2 ............................................................................ 9 changes to l3, l4 description column, table 6; m3, m4 description column, table 6; and m13, m14 description column, table 6 .............................................................................. 16 changes to figure 46 caption ....................................................... 23 changes to figure 48 caption ....................................................... 24 changes to figure 56 caption and figure 57 caption .............. 25 changes to figure 82 caption ....................................................... 30 changes to figure 105 caption .................................................... 33 changes to figure 107 caption .................................................... 34 changes to figure 115 caption and figure 116 caption .......... 35 changes to figure 141 caption .................................................... 40 changes to figure 164 caption .................................................... 43 changes to figure 166 caption .................................................... 44 changes to figure 174 caption and figure 175 ......................... 45 changes to figure 194 and figure 199 caption ......................... 49 changes to figure 222 caption .................................................... 53 changes to figure 224 caption .................................................... 54 added figure 230 to figure 235; renumbered sequentially .... 55 added figure 236 to figure 239 ................................................... 56 added external lo inputs section .............................................. 58 7/2016revision 0: initial version
data sheet ad9371 rev. a | page 3 of 60 specifications electr ical characteristics at ambient temperatur e ra nge, vdda_ser = 1.3 v, v d da _des = 1.3 v, jesd_vtt_des = 1.3 v, vdda_1p3 1 = 1.3 v, vdig = 1.3 v, vdda_1p8 = 1.8 v, vdd_if = 2.5 v, and vdda_3p3 = 3.3 v ; a ll rf specifications based on measurements that include printed circuit board ( pcb ) and matching circuit losses , unless otherwise noted . table 1 . parameter symbol min typ max unit test conditions/comments transmitters ( tx) center frequency 3 00 6000 mhz t x large signal bandwidth (bw) 100 mhz t x synthesis b w 2 250 mhz wider bandwidth for use in digital processing algorithms b w flatness 0.5 db 250 mhz bw, compensated by programmable finite infinite response ( fir ) filter 0.15 db any 20 mhz bw span, compensated by programmable fir filter deviation from linear phase 10 degrees 250 mhz bw power control range 0 42 db increased calibration time, reduced qec 3 , lol 4 performance beyond 20 db power control resolution 0.05 db aclr 5 ( four universal mobile telecommunications system ( umts ) carriers) ? 11.2 dbfs rms , 0 db rf attenuation 700 mhz local oscillator ( lo ) ? 64 db 2600 mhz lo ?64 db 3500 mhz lo ?63 db 5500 mhz lo ?61 db in - band noise ?155 dbfs 6 /hz tx to tx isolation 700 mhz lo 70 db 2600 mhz lo 65 db 3500 mhz lo 65 db 5500 mhz lo 65 db image rejection up to 20 db rf attenuation, within large signal bw, qec 3 active 700 mhz lo 65 db 2600 mhz lo 65 db 3500 mhz lo 65 db 5500 mhz lo 50 db maximum output power 0 dbfs, 1 mhz signal input, 50 load, 0 db rf attenuation 700 mhz lo 7 dbm 2600 mhz lo 7 dbm 3500 mhz lo 6 dbm 5500 mhz lo 4 dbm output third - order intercept point oip3 ? 5 dbfs rms , 0 db rf attenuation 700 mhz lo 27 dbm 2600 mhz lo 27 dbm 3500 mhz lo 25 dbm 5500 mhz lo 25 dbm
ad9371 data sheet rev. a | page 4 of 60 parameter symbol min typ max unit test conditions/comments carrier leakage after calibration, lol correction active, cw 7 input signal, 3 db rf and 3 db digital attenuation, 40 khz measurement bw 7 00 mhz lo ?81 dbfs 6 2600 mhz lo ?81 dbfs 6 3500 mhz lo ?81 dbfs 6 5500 mhz lo ?7 5 dbfs 6 error vector magnitude (3gpp test signals) evm long - term evolution ( lte ) 20 mhz downlink, 5 db rf attenuation 700 mhz lo ? 4 5 db 2600 mhz lo ?39 db 3500 mhz lo ?38.5 db 5500 mhz lo ?37.5 db output impedance 50 differential receivers (rx) center frequency 300 6000 mhz gain range 0 30 db analog gain step 0.5 db bw ripple 0.5 db 100 mhz bw, compensated by programmable fir filter 0.2 db any 20 mhz span, compensated by programmable fir filter rx bandwidth 8 100 mhz analog low - pass filter (lpf) bw is 20 mhz minimum, programmable fir bw configurable over the entire range rx alias band rejection 75 db due to digital filters maximum recommended input power 8 ?14 dbm input is a cw 7 signal at a 0 db attenuation setting; this level increases decibel for decibel with attenuation noise figure nf maximum rx gain, at rx port , matching losses de - embedded 700 mhz lo 1 2 db 2600 mhz lo 1 3.5 db 3500 mhz lo 1 4 db 5500 mhz lo 18 db input third - order intercept point iip3 maximum rx gain, third - order intermodulation (im3) 1 mhz offset from lo 700 mhz lo 22 dbm 2600 mhz lo 22 dbm 3500 mhz lo 20 dbm 5500 mhz lo 20 dbm input second - order intercept point iip2 maximum rx gain, second - order intermodulation (im2) 1 mhz offset from lo 700 mhz lo 65 dbm 2600 mhz lo 65 dbm 3500 mhz lo 65 dbm 5500 mhz lo 57 dbm
data sheet ad9371 rev. a | page 5 of 60 parameter symbol min typ max unit test conditions/comments image rejection qec 3 active, within rx bw 700 mhz lo 75 db 2600 mhz lo 75 db 3500 mhz lo 75 db 5500 mhz lo 75 db input impedance 200 differential tx1 to rx1 signal isolation and tx2 to rx2 signal isolation 700 mhz lo 68 db 2600 mhz lo 68 db 3500 mhz lo 62 db 5500 mhz lo 60 db tx1 to rx2 signal isolation and tx2 to rx1 signal isolation 700 mhz lo 70 db 2600 mhz lo 70 db 3500 mhz lo 62 db 5500 mhz lo 60 db rx1 to rx2 signal isolation 700 mhz lo 60 db 2600 mhz lo 60 db 3500 mhz lo 60 db 5500 mhz lo 60 db rx band spurs referenced to rf input at maximum gain ?95 dbm no more than one spur at this level per 10 mhz of rx bw; excludes harmonics of the reference clock rx lo leakage at rx input at maximum gain leakage decreases decibel for decibel wit h attenuation for first 12 db 700 mhz lo ?65 dbm 2600 mhz lo ?65 dbm 3500 mhz lo ?62 dbm 5500 mhz lo ?62 dbm observation receiver (orx) center frequency 3 00 6000 mhz gain range 0 18 db analog gain step 1 db bw ripple 0.5 db 250 mhz rf bw, compensated by programmable fir filter deviation from linear phase 10 degrees 250 mhz rf bw orx bandwidth 250 mhz orx alias band rejection 60 db due to digital filters maximum recommended input power 8 ?13 dbm input is a cw 7 signal at 0 db attenuation setting; this level increases decibel for decibel with attenuation signal -to - noise ratio 9 snr maximum gain at orx port 700 mhz lo 60 db 2600 mhz lo 60 db 3500 mhz lo 60 db 5500 mhz lo 59 db 200 mhz bw, 245.76 m sps
ad9371 data sheet rev. a | page 6 of 60 parameter symbol min typ max unit test conditions/comments input third - order intercept point iip3 maximum orx gain, im3 1 mhz offset from lo 700 mhz lo 22 dbm 2600 mhz lo 22 dbm 3500 mhz lo 18 dbm 5500 mhz lo 18 dbm input second - order intercept point iip2 maximum orx gain, im2 1 mhz offset from lo 700 mhz lo 65 dbm 2600 mhz lo 65 dbm 3500 mhz lo 65 dbm 5500 mhz lo 60 dbm image rejection after online tone calibration 700 mhz lo 65 db 2600 mhz lo 65 db 3500 mhz lo 65 db 5500 mhz lo 65 db input impedance 200 differential tx1 to orx1 signal and tx2 to orx2 signal isolation 700 mhz lo 70 db 2600 mhz lo 70 db 3500 mhz lo 70 db 5500 mhz lo 70 db tx1 to orx2 signal and tx2 to orx1 signal isolation 700 mhz lo 70 db 2600 mhz lo 70 db 3500 mhz lo 70 db 5500 mhz lo 70 db sniffer receiver (snrx) center frequency 3 00 6000 mhz gain range 0 52 db analog gain step 1 db bw ripple 0.5 db 20 mhz rf bw, compensated by programmable fir filter rx bandwidth 20 mhz rx alias band rejection 60 db due to digital filters maximum recommended input power 8 ?26 dbm input is a cw 7 signal at 0 db attenuation setting noise figure nf maximum gain at snrx port , matching losses de - embedded , gain control limited to the first 20 steps 700 mhz lo 5 db 2600 mhz lo 5 db 3500 mhz lo 7 db 5500 mhz lo 12 db input third - order intercept point iip3 maximum gain, im3 1 mhz offset from lo , gain control limited to the first 20 steps 700 mhz lo 1 dbm 2600 mhz lo 1 dbm 3500 mhz lo 1 dbm 5500 mhz lo 3 dbm
data sheet ad9371 rev. a | page 7 of 60 parameter symbol min typ max unit test conditions/comments input second - order intercept point iip2 maximum gain, im2 1 mhz offset from lo , gain control limited to the first 20 steps 700 mhz lo 45 dbm 2600 mhz lo 45 dbm 3500 mhz lo 45 dbm 5500 mhz lo 45 dbm image rejection after online tone calibration 700 mhz lo 75 db 2600 mhz lo 75 db 3500 mhz lo 75 db 5500 mhz lo 75 db input impedance 400 differential tx1 to snrx signal and tx2 to sn rx signal isolation applies to each snrx input 700 mhz lo 60 db 2600 mhz lo 60 db 3500 mhz lo 60 db 5500 mhz lo 60 db lo synthesizer lo frequency step 2.3 hz 1.5 ghz to 3 ghz, 76.8 mhz phase frequency detector (pfd) frequency lo sp ectral purity ?80 dbc excludes integer boundary spurs 1 khz to 100 mhz spot phase noise 700 mhz lo 10 khz ? 104 dbc 100 khz ?10 7 dbc 1 mhz ?13 3 dbc 2600 mhz lo 10 khz ?93 dbc 100 khz ?97 dbc 1 mhz ?123 dbc 3500 mhz lo 10 khz ?91 dbc 100 khz ?97 dbc 1 mhz ?123 dbc 5500 mhz lo 10 khz ?98 dbc 100 khz ?100 dbc 1 mhz ?110 dbc integrated phase noise integrated from 1 khz to 100 mhz 700 mhz lo 0. 20 rms 2600 mhz lo 0.49 rms 3500 mhz lo 0.55 rms 5500 mhz lo 0.75 rms external lo input input frequency f extlo 600 8000 mhz input frequency must be 2 the desired lo frequency input signal power 0 3 6 dbm 50 matching at the source
ad9371 data sheet rev. a | page 8 of 60 parameter symbol min typ max unit test conditions/comments reference clock (dev_clk_in signal) frequency range 10 320 mhz signal level 0.3 2.0 v p -p ac - coupled, common - mode voltage ( v cm ) = 618 mv; for best spurious performance, use a <1 v p - p input clock auxiliary converters adc adc resolution 12 bits input voltage minimum 0. 2 5 v maximum 3.05 v dac dac resolution 10 bits includes four offset levels output voltage minimum 0.5 v reference voltage (v ref ) = 1 v maximum 3.0 v v ref = 2.5 v drive capability 10 ma digital specifications (cmos) , gpio_x, rx1_enable, rx2_enable, tx1_enable, tx2 enable, syncinbx+, syncoutb0+, gp_interrupt, sdio, sdo, sclk, csb, reset logic inputs input voltage high level vdd_if 0.8 vdd_if v low level 0 vdd_if 0.2 v input current high level ?10 +10 a low level ?10 +10 a logic outputs output voltage high level vdd_if 0.8 v low level vdd_if 0.2 v drive capability 3 ma digital specifications (lvds) , sysref_in x , syncoutb0, syncinbx pairs logic inputs input voltage range 825 1675 mv each differential input in the pair input differential voltage threshold ?100 +100 mv receiver differential input impedance 100 internal termination enabled
data sheet ad9371 rev. a | page 9 of 60 parameter symbol min typ max unit test conditions/comments logic outputs output voltage high 1375 mv low 1025 mv differential 225 mv offset 1200 mv digital specifications (cmos) , gpio_3p3_x signal s logic inputs input voltage high level vdda_3p3 0.8 vdda_3p3 v low level 0 vdda_3p3 0.2 v input current high level ?10 +10 a low level ?10 +10 a logic outputs output voltage high level vdda_3p3 0.8 v low level vdda_3p3 0.2 v drive capability 4 ma 1 vdda_1p3 refers to all analog 1.3 v supplies including the following: vdda_bb , vdda_clksynth , vdda_txl o, vdda_rxrf , vdda_rxsynth , vdda_rxvco , vdda_rxtx , vdda_txsynth , vdda_txvco , vdda_calpll , vdda_snrxsynth , vdda_snrxvco , vdda_clk , and vdda_rxlo . 2 synthesis bandwidth (bw) is the extended bandwidth used by digital correction algorithms to measure conditions and generate c ompensation. 3 quadrature error correction (qec) is the system for minimizing quadrature images of a desired signal. 4 local oscillator leakage (lol) is a measure of the amount of the lo signal that is passed from a mixer with the desired signa l. 5 adjacent channel level reduction (aclr) is a measure of the amount of powe r from the desired signal leaking into an adjacent channel. 6 dbfs represents the ratio of the actual output signal to the maximum possible output level for a continuous wave outpu t signal at the given rf attenuation setting. 7 continuous wave (cw) is a si ngle frequency signal. 8 note that the input signal power limit does not correspond to 0 dbfs at the digital output because of the nature of the conti nuous time - adcs. unlike the hard clipping characteristic of pipe line adcs, these converters exhibit a soft overload behavior when the input approaches the maximum level. 9 signal - to - noise ratio is limited by the baseband quantization noise. current and power co nsumption specificat ions table 2 . parameter min typ max unit test conditions / comments supply characteristics vdda_1p3 analog supplies 1 1.267 1.3 1.33 v vdig supply 1.267 1.3 1.33 v vdda_1p8 supply 1.71 1.8 1.89 v vdd_if supply 1.71 1.8 2.625 v cmos and lvds s upply, 1.8 v to 2.5 v nominal ran ge vdda_3p3 supply 3.135 3.3 3.465 v vdda_ser, vdda_des, jesd_vtt_des supplies 1.14 1.3 1.365 v positive supply current ( r x mode ) two r x channels ena bled, tx u pconverter disabled, 10 0 mhz r x bw, 122.88 m sps data rate vdda_1p3 analog supplies 1 1055 ma vdig supply 625 ma r x qec 2 enabled, qec 2 engine active vdd_if supply (cmos and lvds) 8 ma vdda_3p3 supply 1 ma no auxiliary dacs or auxiliary adcs enabled ; i f enabled, the auxiliary a dc adds 2.7 ma, and each auxiliary adc adds 1.5 ma vdda_ser, vdda_des, jesd_vtt_des supplies 375 ma
ad9371 data sheet rev. a | page 10 of 60 parameter min typ max unit test conditions / comments total power dissipation 2.70 w positive supply current (tx mode) two tx channels enabled, rx downconverter disabled, 200 mhz tx bw, 245.76 msps data rate (orx disabled) vdda_1p3 analog supplies 1 1000 ma vdig supply 410 ma tx qec 2 active vdda_1p8 supply full - scale cw 3 405 ma tx rf attenuation = 0 db, 80 ma tx rf attenuation = 15 db vdd_if supply 8 ma vdda_3p3 supply 1 ma no auxiliary dacs or auxiliary adcs enabled; i f enabled, the auxiliary adc adds 2.7 ma, and each auxiliary adc adds 1.5 ma vdda_ser, vdda_des, jesd_vtt_des supplies 375 ma total power dissipation typical supply voltages, tx qec 2 active 3.70 w tx rf attenuation = 0 db 3.11 w tx rf attenuation = 15 db positive supply current (fdd mode) , 2 rx, 2 tx, orx active 100 mhz rx bw, 122.88 msps data rate; 200 mhz tx bw, 245.76 msps data rate; 200 mhz orx bw, 245.76 msps data rate vdda_1p3 analog supplies 1 1700 ma vdig supply 1080 ma tx qec 2 active vdda_1p8 supply full - scale cw 3 405 ma tx rf attenuation = 0 db 80 ma tx rf attenuation = 15 db vdd_if supply 8 ma vdda_3p3 supply 2 ma no auxiliary dacs or auxiliary adcs enabled; if enabled, the auxiliary adc adds 2.7 ma, and each auxiliary adc adds 1.5 ma vdda_ser, vdda_des, jesd_vtt_des supplies 375 ma total power dissipation typical supply voltages, tx qec 2 active 4.86 w tx rf attenuation = 0 db 4.27 w tx rf attenuation = 15 db maximum operating junction temperature 110 c device designed for 10 - year lifetime when operating at maximum junction temperature 1 vdda_1p3 refers to all analog 1.3 v supplies including the following: vdda_bb , vdda_clksynth , vdda_txl o, vdda_rxrf , vdda_rxsynth , vdda_rxvco , vdda_rxtx , vdda_txsynth , vdda_txvco , vdda_calpll , vdda_snrxsynth , vdda_snrxvco , vdda_clk , and vdda_rxlo . 2 qec is the system for minimizing quadrature images of a desired signal. 3 continuous wave (cw) is a single frequency sign al.
data sheet ad9371 rev. a | page 11 of 60 timing specification s table 3 . parameter symbol min typ max unit test conditions/comments serial peripheral interface ( spi ) timing sclk period t cp 20 ns sclk pulse width t mp 10 ns csb setup to first sclk rising edge t sc 3 ns last sclk falling edge to csb hold t hc 0 ns sdio data input setup to sclk t s 2 ns sdio data input hold to sclk t h 0 ns sclk falling edge to output data delay (3 - or 4 - wire mode) t co 3 8 ns bus turnaround time a fter baseband pro cessor (bbp) drives last address bit t hzm t h t co ns bus turnaround time a fter ad9371 drives last address bit t hzs 0 t co ns digital timing tx x _enable pulse width 10 s rx x _enable pulse width 10 s jesd204b data output timing unit interval ui 162.76 1627.6 ps data rate per channel ( nonreturn to zero ( nrz ) ) 614.4 6144 mbps rise time t r 24 35 ps 20% to 80% in 100 load fall time t f 24 35 ps 20% to 80% in 100 load output common - mode voltage v cm 0 1.8 v ac - coupled termination voltage (v tt ) = 1.2 v 735 1135 mv dc - coupled differential output voltage v diff 360 466 770 mv short - circuit current i dshort ?100 +100 ma differential termination impedance z rdiff 80 100 120 total jitter 17 48.8 ps bit error rate (ber) = 10 ?15 uncorrelated bounded high probability jitter ubhpj 1.2 24.4 ps duty - cycle distortion dcd 3 8.1 ps sysref _in signal setup time to dev_clk_in signal t s 2.5 ns see figure 2 and figure 3 sysref _in signal hold time to dev_clk_in signal t h ?1.5 ns see figure 2 and figure 3 jesd204b data input timing unit interval ui 162.76 1627.6 ps data rate per channel (nrz) 614.4 6144 mbps input common - mode voltage v cm 0.05 1.85 v ac - coupled v tt = 1.2 v 720 1200 mv dc - coupled differential input voltage v diff 125 750 mv v tt source impedance z tt 1.2 30 differential termination impedance z rdiff 80 106 120 v tt ac - coupled 1.27 1.33 v dc - coupled 1.14 1.26 v
ad9371 data sheet rev. a | page 12 of 60 timing diagrams at device pins dev_clk_in t h = ?1.5ns t s = +2.5ns t' h = +0.5ns t' s = +0.5ns at digital core t h t s t h t s t' h t' s t' h dev_clk_in delay in reference to sysref clk delay = 2ns 14651-002 figure 2. sysref_in signal setup and hold timing dev_clk_in sysref_in valid sysref_in t h = ?1.5ns t s = +2.5ns t h t s t h t s t h t s t h t s invalid sysref_in 14651-003 figure 3. sysref_in signal setu p and hold timing examples relative to dev_clk_in signal
data sheet ad9371 rev. a | page 13 of 60 absolute maximum ratings table 4. parameter rating vdda_1p3 1 to vssa ?0.3 v to +1.4 v vdda_ser, vdda_des, and jesd_vtt_des to vssa ?0.3 v to +1.4 v vdig to vssd ?0.3 v to +1.4 v vdda_1p8 to vssa ?0.3 v to +2.0 v vdd_if to vssa ?0.3 v to +3.0 v vdda_3p3 to vssa ?0.3 v to +3.9 v logic inputs and outputs to vssd ?0.3 v to vdd_if + 0.3 v jesd204b logic outputs to vssa ?0.3 v to vdda_ser jesd204b logic inputs to vssa ?0.3 v to vdda_des input current to any pin except supplies 10 ma maximum input power into rf ports (excluding sniffer receiver inputs) 23 dbm (peak) maximum input power into snrxa, snrxb, and snrxc 2 dbm (peak) maximum junction temperature (t j max ) 110c operating temperature range ?40c to +85c storage temperature range ?65c to +150c 1 vdda_1p3 refers to all analog 1.3 v supplies: vdda_bb, vdda_clksynth, vdda_txlo, vdda_rxsynth, vdda_rxvco, vdda_rxtx, vdda_rxrf, vdda_txsynth, vdda_txvco, vdda_calpll, vdda_snrxsynth, vdda_snrxvco, vdda_clk, and vdda_rxlo. stresses at or above those listed under absolute maximum ratings may cause permanent damage to the product. this is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. operation beyond the maximum operating conditions for extended periods may affect product reliability. reflow profile the ad9371 reflow profile is in accordance with the jedec jesd20 criteria for pb-free devices. the maximum reflow temperature is 260c. thermal resistance thermal performance is directly linked to pcb design and operating environment. careful attention to pcb thermal design is required. table 5. thermal resistance package airflow velocity 1 (m/sec) ja 2, 3 (c/w) jc 2, 4 (c/w) bc-196-12 jedec 5 0.0 20.5 0.05 1.0 18.5 n/a 6 2.5 17.2 n/a 6 10-layer pcb 0.0 14.1 0.05 1.0 12.4 n/a 6 2.5 11.6 n/a 6 1 power dissipation is 3.0 w for all test cases. 2 per jedec jesd51-7 for jedec jesd51-5 2s2p test board. 3 per jedec jesd51-2 (still air) or jedec jesd51-6 (moving air). 4 per mil-std 883, method 1012.1. 5 jedec entries refer to the jedec jesd51-9 (high k thermal test board). 6 n/a means not applicable. esd caution
ad9371 data sheet rev. a | page 14 of 60 pin configuration and fu nction descriptions vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssa vssd vssa vssd vssa vssa orx2+ orx2? rx2+ rx2? rx1+ rx1? orx1+ orx1? rx_extlo? rx_extlo+ auxadc_1 auxadc_2 auxadc_3 rbias auxadc_0 tx_extlo? tx_extlo+ dev_ clk_in+ dev_ clk_in? snrxa+ snrxa? snrxb+ snrxb? snrxc+ snrxc? tx2+ tx2? tx1? tx1+ sysref_in+ sysref_in? vdda_rxrf vsnrx_ vco_ldo vdda_ snrxvco vdda_rxlo vrx_ vco_ldo vdda_ rxvco vdda_3p3 vdda_1p8 vdda_bb vdda_rxtx vdda_ calpll vdda_ clksynth vdda_ snrxsynth vdda_ txsynth vdd_if vdda_ rxsynth vdda_ txvco vdda_txlo vtx_ vco_ldo vdig vdig vclk_ vco_ldo vdda_clk vdda_ser vdda_ser vdda_des jesd_vtt_ des serdin1+ serdin1? serdin0+ serdin0? serdin3+ serdin3? serdin2+ serdin2? serdout0+ serdout0? serdout1+ serdout1? serdout2+ serdout2? serdout3+ serdout3? syncinb0+ syncinb0? syncinb1+ syncinb1? syncoutb0? syncoutb0+ gpio_17 gpio_16 gpio_15 gpio_8 gpio_9 gpio_14 gpio_10 gpio_11 gpio_13 gpio_12 gpio_0 gpio_1 gpio_3 gpio_2 gpio_4 gpio_7 gpio_5 gpio_6 sdio sclk sdo csb gpio_18 reset gp_ interrupt test rx1_ enable tx1_ enable rx2_ enable tx2_ enable gpio_3p3_5 gpio_3p3_0 gpio_3p3_1 gpio_3p3_3 gpio_3p3_4 gpio_3p3_2 gpio_3p3_10 gpio_3p3_6 gpio_3p3_11 gpio_3p3_9 gpio_3p3_8 gpio_3p3_7 1 4 7 8 11 14 23 56 910 1213 a g k l p j h b m n c d e f analog input/output digital input/output dc power ground a d9371 top view (not to scale) 14651-004 figure 4. pin configuration table 6. pin function descriptions pin no. type 1 mnemonic description a1, a4, a7, a8, a11, a14, b2 to b6, b9 to b13, c5, c9, c10, d6 to d9, e6, e9, e10, f3 to f10, g1 to g3, g5, g10 to g14, h2 to h10, h13, j2, j13, k1, k2, k13, k14, l1, l2, l13, l14, m2, m9, n2, n7, n14, p1, p2, p3, p10 i vssa analog ground. a2, a3 i orx2+, orx2? differential input for observation receiver 2. do not connect if these pins are unused. a5, a6 i rx2+, rx2? differential input for receiver 2. do not connect if these pins are unused. a9, a10 i rx1+, rx1? differential input for receiver 1. do not connect if these pins are unused.
data sheet ad9371 rev. a | page 15 of 60 pin no. type 1 mnemonic description a12, a13 i orx1+, orx1 ? differential input for observation re ceiver 1. do not connect if these pins are unused. b1 i vdda_rxrf 1.3 v supply input. b7, b8 i/o rx_extlo ? , rx_extlo+ differential rx e xternal lo input/out put. if used for external lo, the input frequency must be 2 the desired carrier frequ ency. do not connect if these pins are unused. b14 i vdda_3p3 supply voltage for gpio_3p3_x. c1, c2, c13, d1, d5, d12 to d14, e1, e14, f1, f14 i/o gpio_3p3_0 to gpio_3p3_11 general - purpose inputs and outputs referenced to 3.3 v supply. see figure 4 to match the ball location to the gpio_3p3_x signal name. some gpio_3p3_x pins can also function as auxiliary dac outputs. c3 o vsnrx_vco_ldo sniffer vco ldo 1.1 v o utput. bypass this pin with a 1 f capacitor. c4 i vdda_snrxvco 1.3 v supply input for s niffer vco low drop out (ldo) r egulator. c6 i vdda_rxlo 1.3 v s upply for the rx s ynthesizer lo g enerator. this pin is sensitive to aggressors. c7 i vdda_rxvco 1.3 v supply input for r eceiver vco ldo r egulator. c8 o vrx_vco_ldo receiver vco ldo 1.1 v o utput. bypass this pin with a 1 f capacitor. c11 i auxadc_1 auxiliary adc 1 input p in. c12 i auxadc_2 auxiliary adc 2 input p in. c14 n/a rbias bias resistor co nnection. this pin generates an internal current based on an external 1% resistor. connect a 14.3 k resistor between this pin and ground (vssa). d2, e2 i snrxc ? , snrxc+ differential input for sniffer receiver i nput c. if these pins are unused, connect to vssa with a short or with a 1 k resistor. d3, e3 i snrxb ? , snrxb+ differential input for sniffer receiver inp ut b. if these pins are unused, connect to vssa with a short or with a 1 k resistor. d4, e4 i snrxa ? , snrxa+ differential input for sniffer receiver in put a. if these pins are unused, connect to vssa with a short or with a 1 k resistor. d10 i vdda_1p8 1.8 v tx supply. d11 i auxadc_3 auxiliary adc 3 input p in. e5 i vdda_bb 1.3 v supply input for adcs, dacs, and auxiliary adcs. e7, e8 i dev_clk_in+, dev_clk_in ? device clock differential in put. e11, e12 i/o tx_extlo ? , tx_extlo+ differential tx e xternal lo input/out put. if these pins are used for the external lo, the input frequency must be 2 the desired carrier frequency. do not connect if these pins are unused. e13 i auxadc_0 a uxiliary adc 0 input p in. f2 i vdda_rxtx 1.3 v supply input for tx/rx baseband circ uits, transimpedance a mplifier (tia), tx t ransconductance (g m ), baseband fi lters, and a uxiliary dacs. f11 i vdda_txvco 1.3 v supply input for t ransmitter vco ldo r egulator. f12 i vdda_txlo 1.3 v s upply for the tx s ynthesizer lo g enerator. this pin is sensitive to aggressors. f13 o vtx_vco_ldo transmitter vco ldo 1.1 v o utput. bypass this pin with a 1 f capacitor. g4 i vdda_calpll 1.3 v supply input for c alibration pll c ircuits. use a separate trace on the pcb back to a common supply point. g6 i vdda_clksynth 1.3 v clock synthesizer supply in put. this pin is sensitive to aggressors. g7 i vdda_snrxsynth 1.3 v snif fer rx synth esizer supply in put. this pin is sensitive to aggressors. g8 i vdda_txsynth 1.3 v tx synthesizer supply inp ut. this pin is sensitive to aggressors. g9 i vdda_rxsynth 1.3 v rx synthesizer supply in put. this pin is sensitive to aggressors.
ad9371 data sheet rev. a | page 16 of 60 pin no. type 1 mnemonic description h1, j1 o tx2 ? , tx2+ differential o utput for t ransmitter 2. h 11, h12, j3, j7, j8, j11, j12, k5 to k8, k11, k12, l5, l6, l11, l12, m10, m11 i/o gpio_0 to gpio_18 general - purpose i nputs and o utputs r eferenced to vdd_if. see figure 4 to match the ball location to the gpio_x signal name. h14, j14 o tx1+, tx1 ? differential o utput for t ransmitter 1. j4 i reset active low chip re set. j5 o gp_interrupt general - p urpose interrupt si gnal. j6 i test test pin u sed for jtag boundary s can. ground this pin if unused. j9 i/o sdio serial data inpu t in 4 - wire m ode or input/o utput in 3 - wire mode. j10 o sdo serial data out put. k3, k4 i sysref_in+, sysref_in ? lvds sysref clock in puts for the jesd 204b i nterface. k9 i sclk serial data bus cloc k. k10 i csb serial data bus chip select. a ctive low. l3, l4 i syncinb1 ? , syncinb1+ lvds sync signal as sociated with orx/ sniffer channel da ta on the jesd 204b i nterface. alternatively, these pins can be set to a cmos input using syncinb1+ as the input and connecting syncinb1 ? with a 1 k resistor to gnd. l7, l10 i vssd digital g round. l8, l9 i vdig 1.3 v digital core su pply. use a separate trace on the pcb back to a common supply point. m1 o vclk_vco_ldo clock vco ldo 1.1 v o utput. bypass this pin with a 1 f capacitor. m3, m4 i syncinb0 ? , syncinb0+ lvds sync signal asso ciated with rx channel da ta on the jesd 204b i nterface. alternatively, th ese pins can be set to a cmos input using syncinb0+ as the input and connecting syncinb0 ? with a 1 k resistor to gnd . m5 i rx1_enable enables rx c hannel 1 signal p ath. m6 i tx1_enable enables tx c hannel 1 signal p ath. m7 i rx2_enable enables rx c hannel 2 signal p ath. m8 i tx2_enable enables tx c hannel 2 signal p ath. m12 i vdd_if cmos/lvds interface s upply. m13, m14 o syncoutb0+, syncoutb0 ? lvds sync signal associat ed with transmitter channel da ta on the jesd i nterface. alternatively, th ese pins can be set to a cmos output using syncoutb0+ as the out put while leaving syncoutb0 ? floating. n1 i vdda_clk 1.3 v clock supply in put. n3, n4 o serdout3 ? , serdout3+ rf current mode lo gic (cml) differential out put 3. this jesd204b lane can be used by the receiver data or by the sniffer/observation receiver data. n5, n6 o serdout2 ? , serdout2+ rf cml differential out put 2. this jesd204b lane can be used by the receiver data or by the sniffer/observation receiver data. n8, p8 i vdda_ser jesd204b 1.3 v serializer supply in put. n9 i vdda_des jesd204b 1.3 v deserializer supply in put. n10, n11 i serdin2 ? , serdin2+ rf cml differential inp ut 2. n12, n13 i serdin3 ? , serdin3+ rf cml differential in put 3. p4, p5 o serdout1 ? , serdout1+ rf cml differential out put 1. this jesd204b lane can be used by receiver data or by sniffer/observation receiver data. p6, p7 o serdout0 ? , serdout0+ rf cml differential ou tput 0. this jesd204b lane can be used by receiver data or by sniffer/observation receiver data. p9 i jesd_vtt_des jesd204b deserializer termination supply in put. p11, p12 i serdin0 ? , serdin0+ rf cml differential in put 0. p13, p14 i serdin1 ? , serdin1+ rf cml differential in put 1. 1 i is input, o is output, i/o is input/output, and n/a is not applicable.
data sheet ad9371 rev. a | page 17 of 60 typical performance characteristics 700 mhz band temperature settings refer to the die temperature. the die temperature is 40c for single trace plots. ? 30 ?110 ?100 ?90 ?80 ?70 ?60 ?50 ?40 300 400 500 600 700 800 900 1000 receiver lo leakage (dbm) receiver lo frequency (mhz) +110c +40c ?40c 14651-305 figure 5. receiver local oscillator (l o) leakage vs. receiver lo frequency, 0 db receiver attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 45 0 5 10 15 20 25 30 35 40 03691215 receiver noise figure (db) receiver attenuation (db) +110c +40c ?40c 14651-306 figure 6. receiver noise figure vs. receiver attenuation, 700 mhz lo, 20 mhz bandwidth, 30.72 msps sample rate, 20 mhz integration bandwidth (includes 1 db matching circuit loss) 30 0 5 10 15 20 25 300 400 500 600 700 800 900 1000 receiver noise figure (db) receiver lo frequency (mhz) +110c +40c ?40c 14651-307 figure 7. receiver noise figure vs. receiver lo frequency, 0 db receiver attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate, 20 mhz integration bandwidth (includes 1 db matching circuit loss) 100 0 10 20 30 40 50 60 70 80 90 03691215 receiver iip2 (dbm) f 1 offset frequency (mhz) +110c +40c ?40c 14651-308 figure 8. receiver iip2 vs. f 1 offset frequency, 900 mhz lo, 0 db attenuation, 20 mhz rf bandwidth, f 2 = f 1 + 1 mhz, 30.72 msps sample rate 100 0 10 20 30 40 50 60 70 80 90 4681012 receiver iip2 (dbm) intermodulation frequency (mhz) f 2 ? f 1 , +110c f 2 ? f 1 , +40c f 2 ? f 1 , ?40c f 2 + f 1 , +110c f 2 + f 1 , +40c f 2 + f 1 , ?40c 14651-309 figure 9. receiver iip2 vs. intermodulation frequency, 900 mhz lo, 0 db attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 40 0 5 10 15 20 25 30 35 03691 21 5 receiver iip3 (dbm) f 1 offset frequency (mhz) +110c +40c ?40c 14651-310 figure 10. receiver iip3 vs. f1 offset frequency, 900 mhz lo, 0 db attenuation, 20 mhz rf bandwidth, f 2 = 2f 1 + 1 mhz, 30.72 msps sample rate
ad9371 data sheet rev. a | page 18 of 60 40 0 5 10 15 20 25 30 35 4681012 receiver iip3 (dbm) intermodulation frequency (mhz) f 2 ? 2 f 1 , +110c f 2 ? 2 f 1 , +40c f 2 ? 2 f 1 , ?40c f 2 + 2 f 1 , +110c f 2 + 2 f 1 , +40c f 2 + 2 f 1 , ?40c 14651-311 figure 11. receiver iip3 vs. intermodulation frequency, 900 mhz lo, 0 db attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 0 ?110 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?20 ?30 ?10 0 5 10 15 20 25 30 receiver image (dbc) receiver attenuation (db) +110c +40c ?40c 14651-312 figure 12. receiver image vs. receiver attenuation, 800 mhz lo, continuous wave (cw) signal 3 mhz offset, 20 mhz rf bandwidth, background tracking calibration (btc) active, 30.72 msps sample rate 25 ?15 ?10 ?5 0 5 15 10 20 0 5 10 15 20 25 30 receiver gain (db) receiver attenuation (db) +110c +40c ?40c 14651-313 figure 13. receiver gain vs. receiver attenuation, 800 mhz lo, cw signal 3 mhz offset, 20 mhz rf bandwidth, 30.72 msps sample rate ? 40 ?110 ?100 ?90 ?80 ?70 ?60 ?50 0 5 10 15 20 25 30 receiver dc offset (dbfs) receiver attenuation (db) +110c +40c ?40c 14651-314 figure 14. receiver dc offset vs. receiver attenuation, 800 mhz lo, 20 mhz rf bandwidth, 30.72 msps sample rate ? 40 ?110 ?100 ?90 ?80 ?70 ?60 ?50 0 5 10 15 20 25 30 receiver hd2 (dbc) receiver attenuation (db) +110c +40c ?40c 14651-315 figure 15. receiver hd2 vs. receiver attenuation, 800 mhz lo, cw signal 3 mhz offset, ?20 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate ? 40 ?110 ?100 ?90 ?80 ?70 ?60 ?50 0 5 10 15 20 25 30 receiver hd3 (dbc) receiver attenuation (db) +110c +40c ?40c 14651-316 figure 16. receiver hd3 vs. receiver attenuation, 800 mhz lo, cw signal 3 mhz offset, ?20 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate
data sheet ad9371 rev. a | page 19 of 60 0 ?60 ?50 ?40 ?30 ?20 ?10 ?60 ?55 ?50 ?45 ?40 ?35 ?30 ?25 ?20 ?15 ?10 ?5 0 receiver evm (db) receiver input power (dbm) +110c +40c ?40c 14651-317 figure 17. receiver error vector magnitude (evm) vs. receiver input power, 900 mhz lo, 20 mhz rf bandwidth, lt e 20 mhz uplink centered at dc, btc active, 30.72 msps sample rate ? 20 ?120 ?100 ?80 ?110 ?90 ?70 ?60 ?50 ?40 ?30 300 400 500 600 700 800 900 1000 rx2 to rx1 crosstalk (db) receiver lo frequency (mhz) 14651-318 figure 18. rx2 to rx1 crosstalk vs. receiver lo frequency, 100 mhz rf bandwidth, cw tone 3 mhz offset from lo 30 0 5 10 15 20 25 ?50 ?45 ?40 ?35 ?30 ?25 ?20 receiver noise figure (db) close-in interferer signal power (dbm) +110c +40c ?40c 14651-319 figure 19. receiver noise figure vs. close-in interferer signal power, 703 mhz lo, 709 mhz cw interferer, nf integrated over 7 mhz to 10 mhz, 20 mhz rf bandwidth 30 0 5 10 15 20 25 ?35 ?30 ?25 ?20 ?10 0 ?15 ?5 5 10 receiver noise figure (db) out-of-band interferer signal power (dbm) +110c +40c ?40c 14651-320 figure 20. receiver noise figure vs. out-of-band interferer signal power, 703 mhz lo, 901 mhz cw interferer, nf integrated over 7 mhz to 10 mhz, 20 mhz rf bandwidth 0 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?20 ?30 ?10 0 5 10 15 30 transmitter image (dbc) rf attenuation (db) +110c +40c ?40c 14651-321 figure 21. transmitter image vs. rf attenuation, 20 mhz rf bandwidth, 900 mhz lo, transmitter quadrature error correction (qec) tracking run with two 20 mhz lte downlink carriers, then image measured with cw 10 mhz offset from lo, 3 db digital backoff, 122.88 msps sample rate 0 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?20 ?30 ?10 ?10 ?5 0 5 10 transmitter image (dbc) desired offset frequency (mhz) +110c +40c ?40c 14651-322 figure 22. transmitter image vs . desired offset frequency, 20 mhz rf bandwidth, 9 00 mhz lo, 0 db rf attenuation, transmitter qec tracking run with two 20 mhz lte downlink carriers, then image measured with cw signal, 3 db digital backoff, 122.88 msps sample rate
ad9371 data sheet rev. a | page 20 of 60 10 ?10 ?8 ?6 ?4 ?2 0 2 6 4 8 300 400 600 800 500 700 900 1000 tx output (dbm) frequency (mhz) +110c +40c ?40c 14651-323 figure 23. tx output power, transmitter qec, and external lo leakage tracking active, 10 mhz cw offset signal, 1 mhz resolution bandwidth, 122.88 msps sample rate ? 60 ?100 ?95 ?90 ?85 ?80 ?75 ?70 ?65 0 5 10 15 20 transmitter lo leakage (dbfs) rf attenuation (db) +110c +40c ?40c 14651-324 figure 24. transmitter lo leakage vs. rf attenuation, 900 mhz lo, transmitter qec and external lo leakage tracking active, cw signal 5 mhz offset from lo, 6 db digital backoff, 1 mhz measurem ent bandwidth (if input power to orx channel is not held constant, performance degrades as shown in this plot) ? 60 ?100 ?95 ?90 ?85 ?80 ?75 ?70 ?65 ?10 ?5 0 5 10 transmitter lo leakage (dbfs) offset frequency (mhz) 900mhz, +110c 900mhz, +40c 900mhz, ?40c 600mhz, +110c 600mhz, +40c 600mhz, ?40c 300mhz, +110c 300mhz, +40c 300mhz, ?40c 14651-325 figure 25. transmitter lo leakage vs. offset frequency, transmitter qec and external lo leakage tracking active, 5 db digital backoff, 1 mhz measurement bandwidth ? 20 ?120 ?100 ?80 ?110 ?90 ?70 ?60 ?50 ?40 ?30 300 400 500 600 700 800 900 1000 tx1 to rx1 crosstalk (db) receiver lo frequency (mhz) 14651-326 figure 26. tx1 to rx1 crosstalk vs. receiver lo frequency, 20 mhz receiver rf bandwidth, 20 mhz transmitter rf bandwidth, cw signal 3 mhz offset from lo ? 20 ?120 ?100 ?80 ?110 ?90 ?70 ?60 ?50 ?40 ?30 300 400 500 600 700 800 900 1000 tx2 to rx2 crosstalk (db) receiver lo frequency (mhz) 14651-327 figure 27. tx2 to rx2 crosstalk vs. receiver lo frequency, 20 mhz receiver rf bandwidth, 20 mhz transmitter rf bandwidt h, cw signal 3 mhz offset from lo ? 20 ?120 ?100 ?80 ?110 ?90 ?70 ?60 ?50 ?40 ?30 300 400 500 600 700 800 900 1000 tx2 to tx1 crosstalk (db) transmitter lo frequency (mhz) 14651-328 figure 28. tx2 to tx1 crosstalk vs. transmitter lo frequency, 20 mhz rf bandwidth, cw sign al 3 mhz offset from lo
data sheet ad9371 rev. a | page 21 of 60 ? 80 ?180 ?160 ?140 ?170 ?150 ?130 ?120 ?110 ?100 ?90 0 5 10 15 20 transmitter noise (dbm/hz) rf attenuation (db) +110c +40c ?40c 14651-329 figure 29. transmitter noise vs. rf attenuation, 800 mhz lo, 20 mhz offset frequency ? 40 ?80 ?75 0 4 8 12 16 20 tx adjacent channel leakage ratio (dbc) rf attenuation (db) +110c lower +40c lower ?40c lower +110c upper +40c upper ?40c upper ?70 ?65 ?60 ?55 ?50 ?45 14651-330 figure 30. tx adjacent channel leakage ratio vs. rf attenuation, 900 mhz lo, 20 mhz rf bandwidth, four-carrier w-cdma desired signal, transmitter qec and lo leakage tracking active ? 40 ?80 ?75 0 4 8 12 16 20 tx alternate channel leakage ratio (dbc) rf attenuation (db) +110c lower +40c lower ?40c lower +110c upper +40c upper ?40c upper ?70 ?65 ?60 ?55 ?50 ?45 14651-331 figure 31. tx alternate channel leakage ratio vs. rf attenuation, 900 mhz lo, 20 mhz rf bandwidth, four-carrier w-cdma desired signal, 2 db digital backoff, transmitter qec and lo leakage tracking active ? 60 ?150 ?130 ?140 100 1k 10k 100k 1m 10m lo phase noise (dbc) offset frequency (hz) ?120 ?110 ?100 ?90 ?80 ?70 14651-332 figure 32. lo phase noise vs. offset frequency, 3 db digital backoff, 710 mhz lo 1.0 0 0.2 0.4 0.1 0.3 0.5 0.6 0.7 0.8 0.9 300 400 500 600 700 800 900 1000 tx integrated phase noise (degrees) transmitter lo frequency (mhz) +110c +40c ?40c 14651-333 figure 33. tx integrated phase noise vs. transmitter lo frequency, 20 mhz rf bandwidth, cw 20 mhz offs et from lo, 3 db digital backoff 35 0 5 10 15 20 25 30 0 6 12 18 41016 2 8 14 20 transmitter oip3 (dbm) rf attenuation (db) +110c +40c ?40c 14651-334 figure 34. transmitter oip3 vs. rf attenuation, 800 mhz lo, 20 mhz rf bandwidth, f 1 = 10 mhz, f 2 = 11 mhz, 3 db digital backoff, 122.88 msps sample rate
ad9371 data sheet rev. a | page 22 of 60 0 ?100 ?80 ?60 ?90 ?70 ?50 ?40 ?30 ?20 ?10 700 725 750 775 800 825 850 875 900 tx output (dbm) frequency (mhz) 14651-335 figure 35. tx output power spectrum, 2 db digital and 3 db rf backoff, 20 mhz rf bandwidth, transmitter qec, and internal lo leakage active, lte 10 mhz signal, 800 mhz lo, 1 mhz resolution bandwidth, 122.88 msps sample rate, test equipment noise floor de-embedded 0 ?100 ?80 ?60 ?90 ?70 ?50 ?40 ?30 ?20 ?10 300 400 500 600 700 800 900 1100 1000 1200 1300 tx output (dbm) frequency (mhz) 14651-336 figure 36. tx output power spectrum, 2 db digital and 3 db rf backoff, 20 mhz rf bandwidth, transmitter qec, and internal lo leakage active, lte 10 mhz signal, 800 mhz lo, 1 mhz resolution bandwidth, 122.88 msps sample rate, test equipment noise floor de-embedded ? 20 ?50 ?45 ?40 ?35 ?30 ?25 048121620 transmitter evm (db) rf attenuation (db) +110c +40c ?40c 14651-337 figure 37. transmitter evm vs. rf attenuation, 900 mhz lo, transmitter lo leakage and transmitter qec tracking active, 20 mhz rf bandwidth, lte 20 mhz downlink si gnal, 122.88 msps sample rate 0 ?100 ?80 ?60 ?90 ?70 ?50 ?40 ?30 ?20 ?10 0 5 10 15 20 25 30 transmitter hd2 (dbc) rf attenuation (db) +110c +40c ?40c 14651-338 figure 38. transmitter hd2 vs. rf attenuation, 800 mhz lo, 810 mhz cw desired signal, 20 mhz rf bandwidth, 122.88 msps sample rate 0 ?80 ?60 ?70 ?50 ?40 ?30 ?20 ?10 0 5 10 15 20 transmitter hd3 (dbc) rf attenuation (db) +110c +40c ?40c 14651-339 figure 39. transmitter hd3 vs. rf attenuation, 800 mhz lo, 810 mhz cw desired signal, 20 mhz rf bandwidth, 122.88 msps sample rate 10 ?20 ?15 ?10 ?5 0 5 0 5 10 15 20 transmitter output power (dbm) rf attenuation (db) +110c +40c ?40c 14651-340 figure 40. transmitter output powe r vs. rf attenuation, 800 mhz lo, 810 mhz cw desired signal, 20 mhz rf bandwidth, 122.88 msps sample rate
data sheet ad9371 rev. a | page 23 of 60 0.10 ?0.10 ?0.06 ?0.02 ?0.08 ?0.04 0 0.02 0.04 0.06 0.08 0 5 10 15 20 25 30 tx attenuation step error (db) rf attenuation (db) +110c +40c ?40c 14651-341 figure 41. tx attenuation step error vs. rf attenuation, 800 mhz lo, 810 mhz cw desired signal, 20 mhz rf bandwidth, 122.88 msps sample rate 0.5 ?0.5 ?0.3 ?0.1 ?0.4 ?0.2 0 0.1 0.2 0.3 0.4 ?50 ?40 ?20 0 20 ?30 ?10 10 30 40 50 deviation from flatness (db) frequency offset from lo (mhz) 14651-342 figure 42. transmitter frequency re sponse deviation from flatness vs. frequency offset from lo, 800 mh z lo, 20 mhz rf bandwidth, 6 db digital backoff, 122.88 msps sample rate ? 40 ?100 ?90 ?80 ?70 ?60 ?50 300 400 500 600 700 800 900 1000 observation receiver lo leakage (dbm) observation receiver lo frequency (mhz) +110c +40c ?40c 14651-343 figure 43. observation receiver lo leakage vs. observation receiver lo frequency, 0 db receiver attenuat ion, 100 mhz rf bandwidth, 122.88 msps sample rate 30 0 5 10 15 20 25 300 400 500 600 700 800 900 1000 observation receiver noise figure (db) observation receiver lo frequency (mhz) +110c +40c ?40c 14651-344 figure 44. observation receiver noise figure vs. observation receiver lo frequency, 0 db receiver attenuat ion, 100 mhz rf bandwidth, 122.88 msps sample rate, 100 mhz integration bandwidth 80 0 10 20 30 40 50 60 70 0 306090100 20 50 80 10 40 70 110 observation receiver iip2 (dbm) f 1 offset frequency (mhz) +110c +40c ?40c 14651-345 figure 45. observatio n receiver iip2 vs. f 1 offset frequency, 900 mhz lo, 0 db attenuation, 100 mhz rf bandwidth, f 2 = f 1 + 1 mhz, 122.88 msps sample rate 80 0 10 20 30 40 50 60 70 02 03 55 0 5 5 15 30 45 10 25 40 60 observation receiver iip2 (dbm) intermodulation frequency (mhz) +110c +40c ?40c 14651-346 figure 46. observation receiver iip2 vs. intermodulation frequency (f 2 ? f 1 ), 900 mhz lo, 0 db attenuation, 100 mhz rf bandwidth, 122.88 msps sample rate
ad9371 data sheet rev. a | page 24 of 60 40 0 5 10 15 20 25 30 35 03 06 09 0 1 0 0 20 50 80 10 40 70 110 observation receiver iip3 (dbm) f 1 offset frequency (mhz) +110c +40c ?40c 14651-347 figure 47. observatio n receiver iip3 vs. f 1 offset frequency, 900 mhz lo, 0 db attenuation, 100 mhz rf bandwidth, f 2 = 2f 1 + 1 mhz, 122.88 msps sample rate 5 2 03 55 0 5 5 15 30 45 10 25 40 60 intermodulation frequency (mhz) +110c +40c ?40c 40 0 5 10 15 20 25 30 35 observation receiver iip3 (dbm) 14651-348 figure 48. observation receiver iip3 vs. intermodulation frequency (2f 2 ? f 1 ), 900 mhz lo, 0 db attenuation, 100 mhz rf bandwidth, 122.88 msps sample rate 0 ?120 ?100 ?80 ?40 ?60 ?20 0 3 6 9 121518 observation receiver image (dbc) observation receiver attenuation (db) +110c +40c ?40c 14651-349 figure 49. observation receiver image vs. observation receiver attenuation, 800 mhz lo, cw signal 16 mhz offset , 100 mhz rf bandwidth, btc active, 122.88 msps sample rate 25 ?15 ?10 ?5 10 0 20 5 15 0 3 6 9 121518 observation receiver gain (db) observation receiver attenuation (db) +110c +40c ?40c 14651-350 figure 50. observation receiver gain vs. observation receiver attenuation, 800 mhz lo, cw signal 16 mhz o ffset, 100 mhz rf bandwidth, 122.88 msps sample rate ? 40 ?120 ?110 ?100 ?90 ?80 ?70 ?60 ?50 0 3 6 9 121518 observation receiver dc offset (dbfs) observation receiver attenuation (db) +110c +40c ?40c 14651-351 figure 51. observation receiver dc offset vs. observation receiver attenuation, 800 mhz lo, 100 mhz rf bandwidth, 122.88 msps sample rate 0 ?120 ?100 ?80 ?60 ?40 ?20 0369121518 observation receiver hd2 (dbc) observation receiver attenuation (db) +110c +40c ?40c 14651-352 figure 52. observation re ceiver hd2 vs. observation receiver attenuation, 800 mhz lo, cw signal 16 mhz offset, ?20 dbm at 0 db attenuation, input power increasing decibel fo r decibel with attenuation, 100 mhz rf bandwidth, 122.88 msps sample rate
data sheet ad9371 rev. a | page 25 of 60 0 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?20 ?30 ?10 0369121518 observation receiver hd3 (dbc) observation receiver attenuation (db) +110c +40c ?40c 14651-353 figure 53. observation receiver hd3 vs. observation receiver attenuation, 800 mhz lo, cw signal 16 mhz offset, ?20 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 100 mhz rf bandwidth, 122.88 msps sample rate ? 50 ?130 ?120 ?110 ?100 ?90 ?70 ?80 ?60 300 400 500 600 700 sniffer receiver lo leakage (dbm) sniffer receiver lo frequency (mhz) +110c +40c ?40c 14651-354 figure 54. sniffer receiver lo leakage vs. sniffer receiver lo frequency, 0 db receiver attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 300 400 500 600 700 30 0 5 10 20 15 25 sniffer receiver noise figure (db) sniffer receiver lo frequency (mhz) +110c +40c ?40c 14651-355 figure 55. sniffer receiver noise figure vs. sniffer receiver lo frequency, 0 db receiver attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate, 20 mhz integration bandwidth 90 0 10 20 50 30 70 60 40 80 3691215 sniffer receiver iip2 (dbm) intermodulation frequency (mhz) +110c +40c ?40c 14651-356 figure 56. sniffer receiver iip2 vs. intermodulation frequency (f 2 ? f 1 ), 600 mhz lo, 0 db attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 20 15 10 5 0 ?5 ?10 315 12 9 6 sniffer receiver iip3 (dbm) intermodulation frequency (mhz) +110c +40c ?40c 14651-357 figure 57. sniffer receiver iip3 vs. intermodulation frequency (f 2 ? 2f 1 ), 600 mhz lo, 0 db attenuation, 20 mhz rf ba ndwidth, 30.72 msps sample rate 0 5 10 15 20 sniffer receiver image (dbc) sniffer receiver attenuation (db) +110c +40c ?40c 0 ?100 ?80 ?60 ?90 ?70 ?50 ?40 ?30 ?20 ?10 14651-358 figure 58. sniffer receiver image vs. sniffer receiver attenuation, 600 mhz lo, cw signal 3 mhz offset, 20 mhz rf bandwidth, 30.72 msps sample rate
ad9371 data sheet rev. a | page 26 of 60 0 5 10 15 20 sniffer receiver dc offset (dbfs) sniffer receiver attenuation (db) +110c +40c ?40c ? 40 ?110 ?100 ?80 ?60 ?90 ?70 ?50 14651-359 figure 59. sniffer receiver dc offset vs. sniffer receiver attenuation, 600 mhz lo, cs signal 3 mhz offset, ?35 dbm at 0 db attenuation, input power increasing decibel fo r decibel with attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 0 5 10 15 20 sniffer receiver hd2 (dbc) sniffer receiver attenuation (db) +110c +40c ?40c 0 ?100 ?80 ?60 ?90 ?70 ?50 ?40 ?30 ?20 ?10 14651-360 figure 60. sniffer receiver hd2 vs. sniffer receiver attenuation, 600 mhz lo, cw signal 3 mhz offset, ?35 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 0 5 10 15 20 sniffer receiver hd3 (dbc) sniffer receiver attenuation (db) +110c +40c ?40c 0 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 14651-361 figure 61. sniffer receiver hd3 vs. sniffer receiver attenuation, 600 mhz lo, cw signal 3 mhz offset, ?35 dbm at 0 db attenuation, input power increasing decibel for decibel with a ttenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 0 ?60 ?50 ?40 ?30 ?20 ?10 ?70 ?55 ?50 ?65 ?60 ?45 ?40 ?35 ?30 ?25 sniffer receiver evm (db) sniffer receiver input power (dbm) +110c +40c ?40c 14651-362 figure 62. sniffer receiver evm vs. sniffer receiver input power, 600 mhz lo, 20 mhz rf bandwidth, lte 20 mhz up link centered at dc, btc active, 30.72 msps sample rate 40 ?40 ?30 ?20 ?10 0 20 10 30 01216 4 8 20 24 28 32 36 40 4844 52 sniffer receiver gain (db) sniffer receiver attenuation (db) +110c +40c ?40c 14651-363 figure 63. sniffer receiver gain vs. sniffer receiver attenuation, 600 mhz lo, cw signal 3 mhz offset, 20 mhz rf bandwidth, 30.72 msps sample rate
data sheet ad9371 rev. a | page 27 of 60 2.6 ghz band ? 30 ?40 ?50 ?60 ?70 ?80 ?90 ?100 ?110 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 receiver lo leakage (dbm) receiver lo frequency (mhz) +110c +40c ?40c 14651-005 figure 64. receiver local oscillator (lo) leakage vs. receiver lo frequency, 0 db receiver attenuation, 40 mhz rf bandwidth, 122.88 msps sample rate 45 0 10 5 15 20 25 30 35 40 receiver noise figure (db) 03691 21 5 receiver attenuation (db) +110c +40c ?40c 14651-006 figure 65. receiver noise figure vs. receiver attenuation, 2600 mhz lo, 40 mhz bandwidth, 122.88 msps sample rate, 20 mhz integration bandwidth (includes 1.4 db matching circuit loss) 30 0 5 10 15 20 25 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 receiver noise figure (db) receiver lo frequency (mhz) +110c +40c ?40c 14651-007 figure 66. receiver noise figure vs. receiver lo frequency, 0 db receiver attenuation, 40 mhz rf bandwidth, 122.88 msps sample rate, 20 mhz integration bandwidth (include s 1.4 db matching circuit loss) 100 0 30 20 10 40 50 60 70 80 90 receiver iip2 (dbm) 0 5 10 15 20 25 30 f 1 offset frequency (mhz) +110c +40c ?40c 14651-008 figure 67. receiver iip2 vs. f 1 offset frequency, 2600 mhz lo, 0 db attenuation, 40 mhz rf bandwidth, f 2 = f 1 + 1 mhz, 122.88 msps sample rate 100 0 30 20 10 40 50 60 70 80 90 receiver iip2 (dbm) f 2 ? f 1 , +110c f 2 ? f 1 , +40c f 2 ? f 1 , ?40c f 2 + f 1 , +110c f 2 + f 1 , +40c f 2 + f 1 , ?40c 5 1015202530 intermodulation frequency (mhz) 14651-009 figure 68. receiver iip2 vs. intermodulation frequency, 2600 mhz lo, 0 db attenuation, 40 mhz rf bandwidth, 122.88 msps sample rate 40 0 15 10 5 20 25 30 35 receiver iip3 (dbm) 0 5 10 15 20 25 30 f 1 offset frequency (mhz) +110c +40c ?40c 14651-010 figure 69. receiver iip3 vs. f 1 offset frequency, 2600 mhz lo, 0 db attenuation, 40 mhz rf bandwidth, f 2 = 2 f 1 + 2 mhz, 122.88 msps sample rate
ad9371 data sheet rev. a | page 28 of 60 40 0 15 10 5 20 25 30 35 receiver iip3 (dbm) 5 1015202530 intermodulation frequency (mhz) f 2 ? 2 f 1 , +110c f 2 ? 2 f 1 , +40c f 2 ? 2 f 1 , ?40c f 2 + 2 f 1 , +110c f 2 + 2 f 1 , +40c f 2 + 2 f 1 , ?40c 14651-011 figure 70. receiver iip3 vs. intermodulation frequency, 2600 mhz lo, 0 db attenuation, 40 mhz rf bandwi dth, 122.88 msps sample rate ? 40 ?100 ?90 ?80 ?70 ?60 ?50 receiver image (dbc) 0 5 10 15 20 25 30 receiver attenuation (db) +110c +40c ?40c 14651-012 figure 71. receiver image vs. receiver attenuation, 2600 mhz lo, continuous wave (cw) signal 5 mhz offset, 40 mhz rf bandwidth, background tracking calibration (btc ) active, 122.88 msps sample rate 25 ?15 ?10 0 10 20 ?5 5 15 receiver gain (db) 0 5 10 15 20 25 30 receiver attenuation (db) +110c +40c ?40c 14651-013 figure 72. receiver gain vs. receiver attenuation, 2600 mhz lo, cw signal 5 mhz offset, 40 mhz rf bandwidth, 122.88 msps sample rate ? 40 ?120 ?80 ?60 ?90 ?100 ?110 ?70 ?50 receiver dc offset (dbfs) 0 5 10 15 20 25 30 receiver attenuation (db) +110c +40c ?40c 14651-014 figure 73. receiver dc offset vs. receiver attenuation, 2550 mhz lo, 40 mhz rf bandwidth, 122. 88 msps sample rate ? 40 ?110 ?100 ?80 ?60 ?90 ?70 ?50 receiver hd2 (dbc) 0 5 10 15 20 25 30 receiver attenuation (db) +110c +40c ?40c 14651-015 figure 74. receiver hd2 vs. receiver attenuation, 2600 mhz lo, cw signal 5 mhz offset, ?20 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 40 mhz rf bandwidth, 122.88 msps sample rate ? 40 ?110 ?100 ?80 ?60 ?90 ?70 ?50 receiver hd3 (dbc) 0 5 10 15 20 25 30 receiver attenuation (db) +110c +40c ?40c 14651-016 figure 75. receiver hd3 vs. receiver attenuation, 2600 mhz lo, cw signal 5 mhz offset, ?20 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 40 mhz rf bandwidth, 122.88 msps sample rate
data sheet ad9371 rev. a | page 29 of 60 0 ?45 ?35 ?20 ?10 ?25 ?40 ?30 ?15 ?5 receiver evm (db) ?60 ?50 ?40 ?30 ?20 ?10 0 ?55 ?45 ?35 ?25 ?15 ?5 receiver input power (dbm) +110c +40c ?40c 14651-017 figure 76. receiver error vector magnitude (evm) vs. receiver input power, 2600 mhz lo, 40 mhz rf bandwidth, lt e 20 mhz uplink centered at dc, btc active, 122.88 msps sample rate 0 ?20 ?10 ?30 ?100 ?90 ?80 ?70 ?60 ?50 ?40 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 rx2 to rx1 crosstalk (db) receiver lo frequency (mhz) 14651-018 figure 77. rx2 to rx1 crosstalk vs. receiver lo frequency, 40 mhz rf bandwidth, cw tone 3 mhz offset from lo 30 0 5 10 15 20 25 receiver noise figure (db) ?50 ?45 ?40 ?35 ?30 ?25 ?20 close-in interferer signal power (dbm) +110c +40c ?40c 14651-019 figure 78. receiver noise figure vs. close-in interferer signal power, 2614 mhz lo, 2625 mhz cw interferer, noise figure integrated over 7 mhz to 10 mhz, 40 mhz rf bandwidth 30 0 5 10 15 20 25 receiver noise figure (db) ?40 ?35 ?30 ?25 ?20 ?15 ?10 ?5 0 out-of-band interferer signal power (dbm) +110c +40c ?40c 14651-020 figure 79. receiver noise figure vs. out-of-band interferer signal power, 2614 mhz lo, 2435 mhz cw interferer, noise figure integrated over 7 mhz to 10 mhz 0 ?20 ?10 ?30 ?100 ?90 ?80 ?70 ?60 ?50 ?40 transmitter image (dbc) 01 5 10 52 0 rf attenuation (db) +110c +40c ?40c 14651-021 figure 80. transmitter image vs. rf attenuation, 40 mhz rf bandwidth, 2600 mhz lo, transmitter quadrature error correction (qec) tracking run with two 20 mhz lte down link carriers, then image measured with cw 10 mhz offset from lo, 3 db digital backoff, 245.76 msps sample rate 0 ?20 ?10 ?30 ?100 ?90 ?80 ?70 ?60 ?50 ?40 transmitter image (dbc) ?20 10 0 ?10 20 5 ?5 ?15 15 desired offset frequency (mhz) +110c +40c ?40c 14651-022 figure 81. transmitter image vs. desired offset frequency, 40 mhz rf bandwidth, 2300 mhz lo, 0 db rf a ttenuation, transmitter qec tracking run with two 20 mhz lte downlink carriers, then image measured with cw signal, 3 db digital backoff, 245.76 msps sample rate
ad9371 data sheet rev. a | page 30 of 60 10 6 8 4 ?10 ?8 ?6 ?4 ?2 0 2 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 tx output (dbm) frequency (mhz) +110c +40c ?40c 14651-023 figure 82. tx output power, transmitter qec, and external lo leakage active, 5 mhz cw offset signal, 1 mh z resolution bandwidth, 245.76 msps sample rate ? 60 ?100 ?95 ?85 ?80 ?70 ?90 ?75 ?65 transmitter lo leakage (dbfs) 0 5 10 15 20 rf attenuation (db) +110c +40c ?40c 14651-024 figure 83. transmitter lo leakage vs. rf attenuation, 2300 mhz lo, external transmitter qec and lo leakage tracking active, cw signal 10 mhz offset from lo, 6 db digital backoff, 1 mhz measurement bandwidth (if input power to the orx cha nnel is not held constant, device performance degrades as shown in this figure) ? 60 ?100 ?95 ?85 ?80 ?70 ?90 ?75 ?65 transmitter lo leakage (dbfs) 1.8ghz, +110c 1.8ghz, +40c 1.8ghz, ?40c 2.3ghz, +110c 2.3ghz, +40c 2.3ghz, ?40c 2.8ghz, +110c 2.8ghz, +40c 2.8ghz, ?40c ?30 ?10 10 ?20 0 20 30 offset frequency (mhz) 14651-025 figure 84. transmitter lo leakage vs. o ffset frequency, external transmitter qec and lo leakage tracking active, 6 db digital backoff, 1 mhz measurement bandwidth 0 ?20 ?10 ?30 ?100 ?90 ?80 ?70 ?60 ?50 ?40 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 tx1 to rx1 crosstalk (db) receiver lo frequency (mhz) 14651-026 figure 85. tx1 to rx1 crosstalk vs. receiver lo frequency, 40 mhz receiver rf bandwidth, 40 mhz transmitter rf bandwidth, cw signal 3 mhz offset from lo 0 ?20 ?10 ?30 ?100 ?90 ?80 ?70 ?60 ?50 ?40 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 tx2 to rx2 crosstalk (db) receiver lo frequency (mhz) 14651-027 figure 86. tx2 to rx2 crosstalk vs. receiver lo frequency, 40 mhz receiver rf bandwidth, 40 mhz transmitter rf bandwidth, cw signal 3 mhz offset from lo 0 ?20 ?10 ?30 ?100 ?90 ?80 ?70 ?60 ?50 ?40 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 tx2 to tx1 crosstalk (db) transmitter lo frequency (mhz) 14651-028 figure 87. tx2 to tx1 crosstalk vs. transmitter lo frequency, 40 mhz rf bandwidth, cw signal 3 mhz offset from lo
data sheet ad9371 rev. a | page 31 of 60 ? 80 ?180 ?160 ?130 ?120 ?100 ?140 ?170 ?150 ?110 ?90 transmitter noise (dbm/hz) 0 5 10 15 20 rf attenuation (db) +110c +40c ?40c 14651-029 figure 88. transmitter noise vs. rf attenuation, 2600 mhz lo, 10 mhz offset frequency ? 40 ?80 ?65 ?70 ?75 ?60 ?55 ?50 ?45 tx adjacent channel leakage ratio (db) 0 4 8 12 16 20 rf attenuation (db) +110c upper +40c upper ?40c upper +110c lower +40c lower ?40c lower 14651-030 figure 89. tx adjacent channel le akage ratio vs. rf attenuation, 2600 mhz lo, 40 mhz rf bandwidth, four-carrier w-cdma desired signal, transmitter qec and lo leakage tracking active ? 40 ?80 ?65 ?70 ?75 ?60 ?55 ?50 ?45 tx alternate channel leakage ratio (db) 0 4 8 12 16 20 rf attenuation (db) +110c upper +40c upper ?40c upper +110c lower +40c lower ?40c lower 14651-031 figure 90. tx alternate channel leakage ratio vs. rf attenuation, 2600 mhz lo, 40 mhz rf bandwidth, four-carrier w-cdma desired signal, 2 db digital backoff, transmitter qec and lo leakage tracking active lo phase noise (dbc) offset frequency (hz) ?150 ?140 ?130 ?120 ?110 ?100 ?90 ?80 ?70 ? 60 100 1k 10k 100k 1m 10m 14651-032 figure 91. lo phase noise vs. offset frequency, 3 db digital backoff, 2600 mhz 1.0 0 0.2 0.3 0.1 0.4 0.5 0.6 0.7 0.8 0.9 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 tx integrated phase noise (degrees) transmitter lo frequency (mhz) +110c +40c ?40c 14651-033 figure 92. tx integrated phase noise vs. transmitter lo frequency, 40 mhz rf bandwidth, continuous wave 20 mhz offset from lo, 3 db digital backoff 35 0 5 10 15 20 25 30 transmitter oip3 (dbm) 0481 21 62 0 2 6 10 14 18 rf attenuation (db) +110c +40c ?40c 14651-034 figure 93. transmitter oip3 vs. rf attenuation, 2600 mhz lo, 40 mhz rf bandwidth, f 1 = 20 mhz, f 2 = 21 mhz, 3 db digital backoff, 245.76 msps sample rate
ad9371 data sheet rev. a | page 32 of 60 0 ?100 ?90 ?80 ?70 ?50 ?30 ?10 ?60 ?40 ?20 tx output (dbm) 2500 2550 2600 2650 2700 2525 2575 2625 2675 frequency (mhz) 14651-035 figure 94. tx output power spectrum, 2 db digital and 3 db rf backoff, 40 mhz rf bandwidth, transmitter qec and in ternal lo leakage active, lte 10 mhz signal, 2600 mhz lo, 1 mhz resolution bandwidth, 245.76 msps sample rate 0 ?100 ?90 ?80 ?70 ?50 ?30 ?10 ?60 ?40 ?20 tx output (dbm) 2100 2300 2500 2800 3100 2200 2400 2600 3000 2750 2900 frequency (mhz) 14651-036 figure 95. tx output power spectrum, 2 db digital and 3 db rf backoff, 40 mhz rf bandwidth, transmitter qec and internal lo leakage active, lte 10 mhz signal, 2600 mhz lo, 1 mhz resolution bandwidth, 245.76 msps sample rate ? 20 ?50 ?45 ?40 ?35 ?30 ?25 transmitter evm (db) 0481 21 62 0 rf attenuation (db) +110c +40c ?40c 14651-037 figure 96. transmitter evm vs. rf atte nuation, 2550 mhz lo, transmitter lo leakage and transmitter qec tracking active, 200 mhz rf bandwidth, lte 20 mhz downlink signal, 245.76 msps sample rate 0 ?20 ?10 ?30 ?100 ?90 ?80 ?70 ?60 ?50 ?40 transmitter hd2 (dbc) 05 2 0 15 10 rf attenuation (db) +110c +40c ?40c 14651-038 figure 97. transmitter hd2 vs. rf attenuation, 2600 mhz lo, 2605 mhz cw desired signal, 40 mhz rf bandwidth, 245.76 msps sample rate 0 ?20 ?10 ?30 ?80 ?70 ?60 ?50 ?40 transmitter hd3 (dbc) 02 0 10 51 5 rf attenuation (db) +110c +40c ?40c 14651-039 figure 98. transmitter hd3 vs. rf attenuation, 2600 mhz lo, 2605 mhz cw desired signal, 40 mhz rf bandwidth, 245.76 msps sample rate 10 0 5 ?5 ?20 ?15 ?10 transmitter output power (dbm) 02 0 10 51 5 rf attenuation (db) +110c +40c ?40c 14651-040 figure 99. transmitter output power vs. rf attenuation, 2600 mhz lo, 2605mhz cw desired signal, 40 mhz rf bandwidth, 245.76 msps sample rate
data sheet ad9371 rev. a | page 33 of 60 0.10 0.04 0.08 0 ?0.10 ?0.08 ?0.04 0.02 0.06 ?0.02 ?0.06 tx attenuation step error (db) 02 0 16 8 41 21 8 14 6 21 0 rf attenuation (db) +110c +40c ?40c 14651-041 figure 100. tx attenuation step erro r vs. rf attenuatio n, 2600 mhz lo, 2610 mhz cw desired signal, 40 mhz rf bandwidth, 245.76 msps sample rate 0.5 ?0.5 ?0.4 ?0.3 ?0.2 0 0.2 0.4 ?0.1 0.1 0.3 deviation from flatness (db) ?100 ?60 ?20 40 100 ?80 ?40 0 80 20 60 frequency offset from lo (mhz) 14651-042 figure 101. transmitter frequency response deviation from flatness vs. frequency offset from lo, 2600 mhz lo, 100 mhz rf bandwidth, 6 db digital backoff, 245.76 msps sample rate ? 40 ?80 ?75 ?65 ?60 ?70 ?50 ?45 ?55 observation receiver lo leakage (dbm) 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 observation receiver lo frequency (mhz) +110c +40c ?40c 14651-043 figure 102. observation receiver lo leakage vs. observation receiver lo frequency, 0 db receiver atte nuation, 200 mhz rf bandwidth, 245.76 msps sample rate 30 0 5 10 20 25 15 observation receiver noise figure (db) 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 observation receiver lo frequency (mhz) +110c +40c ?40c 14651-044 figure 103. observation receiver noise figure vs. observation receiver lo frequency, 0 db receiver atte nuation, 200 mhz rf bandwidth, 245.76 msps sample rate, 100 mhz integration bandwidth 80 0 10 20 30 40 60 50 70 observation receiver iip2 (dbm) 0 20406080 110 10 30 50 70 90 100 f 1 offset frequency (mhz) +110c +40c ?40c 14651-045 figure 104. observatio n receiver iip2 vs. f 1 offset frequency, 2600 mhz lo, 0 db attenuation, 200 mhz rf bandwidth, f 2 = f 1 + 1 mhz, 245.76 msps sample rate 80 0 10 20 30 40 60 50 70 observation receiver iip2 (dbm) 525456585 115 15 35 55 75 95 105 intermodulation frequency (mhz) +110c +40c ?40c 14651-046 figure 105. observation receiver iip2 vs. intermodulation frequency (f 2 ? f 1 ), 2600 mhz lo, 0 db attenuation, 200 mhz rf bandwidth, 245.76 msps sample rate
ad9371 data sheet rev. a | page 34 of 60 40 0 5 10 15 20 30 25 35 observation receiver iip3 (dbm) 0 20406080 110 10 30 50 70 90 100 f 1 offset frequency (mhz) +110c +40c ?40c 14651-047 figure 106. observatio n receiver iip3 vs. f 1 offset frequency, 2600 mhz lo, 0 db attenuation, 200 mhz rf bandwidth, f 2 = 2f 1 + 1 mhz, 245.76 msps sample rate 40 0 5 10 15 20 30 25 35 observation receiver iip3 (dbm) 525456585 115 15 35 55 75 95 105 intermodulation frequency (mhz) +110c +40c ?40c 14651-048 figure 107. observation receiver iip3 vs. intermodulation frequency (f 2 ? 2f 1 ), 2600 mhz lo, 0 db attenuation, 200 mhz rf bandwidth, 245.76 msps sample rate 0 ?120 ?100 ?80 ?60 ?40 ?20 observation receiver image (dbc) 061 21 8 391 5 observation receiver attenuation (db) +110c +40c ?40c 14651-049 figure 108. observation receiver image vs. observation receiver attenuation, 2600 mhz lo, cw signal 25 mhz offset, 200 mhz rf bandwidth, btc active, 245.76 msps sample rate 25 ?15 ?10 ?5 0 5 15 10 20 observation receiver gain (db) 061 21 8 391 5 observation receiver attenuation (db) +110c +40c ?40c 14651-050 figure 109. observation receiver gain vs. observation receiver attenuation, 2600 mhz lo, cw signal 25 mhz offset, 200 mhz rf bandwidth, 245.76 msps sample rate ? 40 ?100 ?90 ?80 ?70 ?60 ?50 observation receiver dc offset (dbfs) 061 21 8 391 5 observation receiver attenuation (db) +110c +40c ?40c 14651-051 figure 110. observation receiver dc offset vs. observation receiver attenuation, 2600 mhz lo, 200 mhz rf ba ndwidth, 245.76 msps sample rate 0 ?120 ?100 ?80 ?60 ?40 ?20 observation receiver hd2 (dbc) 061 21 8 391 5 observation receiver attenuation (db) +110c +40c ?40c 14651-052 figure 111. observation receiver hd2 vs. observation receiver attenuation, 2600 mhz lo, cw signal 25 mhz offset, ?20 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 200 mhz rf bandwidth, 245.76 msps sample rate
data sheet ad9371 rev. a | page 35 of 60 0 ?120 ?100 ?80 ?60 ?40 ?20 observation receiver hd3 (dbc) 061 21 8 391 5 observation receiver attenuation (db) +110c +40c ?40c 14651-053 figure 112. observation receiver hd3 vs. observation receiver attenuation, 2600 mhz lo, cw signal 25 mhz offset, ?20 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 200 mhz rf bandwidth, 245.76 msps sample rate ? 40 ?120 ?110 ?100 ?90 ?80 ?60 ?70 ?50 sniffer receiver lo leakage (dbm) 2300 2500 2700 2800 2400 2600 sniffer receiver lo frequency (mhz) +110c +40c ?40c 14651-054 figure 113. sniffer receiver lo leakage vs. sniffer receiver lo frequency, 0 db receiver attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 30 0 5 10 20 15 25 sniffer receiver noise figure (db) 2300 2500 2700 2800 2400 2600 sniffer receiver lo frequency (mhz) +110c +40c ?40c 14651-055 figure 114. sniffer receiver noise figure vs. sniffer receiver lo frequency, 0 db receiver attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate, 20 mhz integration bandwidth 90 0 10 20 60 40 80 50 30 70 sniffer receiver iip2 (dbm) 39 1 2 6 intermodulation frequency (mhz) +110c +40c ?40c 14651-056 figure 115. sniffer receiver iip2 vs. intermodulation frequency (f 2 ? f 1 ), 2600 mhz lo, 0 db attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 20 ?10 5 ?5 15 0 10 sniffer receiver iip3 (dbm) 08 1 2 46 10 2 intermodulation frequency (mhz) +110c +40c ?40c 14651-057 figure 116. sniffer receiver iip3 vs. intermodulation frequency (f 2 ? 2f 1 ), 2600 mhz lo, 0 db attenuation, 20 mhz rf ba ndwidth, 30.72 msps sample rate 0 ?100 ?90 ?70 ?40 ?80 ?50 ?20 ?60 ?30 ?10 sniffer receiver image (dbc) 02 0 10 15 5 sniffer receiver attenuation (db) +110c +40c ?40c 14651-058 figure 117. sniffer receiver image vs. sniffer receiver attenuation, 2600 mhz lo, cw signal 1 mhz offset, 20 mhz rf bandwidth, 30.72 msps sample rate
ad9371 data sheet rev. a | page 36 of 60 ? 40 ?110 ?100 ?80 ?90 ?70 ?50 ?60 sniffer receiver dc offset (dbfs) 02 0 15 51 0 sniffer receiver attenuation (db) +110c +40c ?40c 14651-059 figure 118. sniffer receiver dc offset vs. sniffer receiver attenuation, 2600 mhz lo, cw signal 1 mhz offset, ?35 dbm at 0 db attenuation, input power increasing decibel fo r decibel with attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 0 ?100 ?90 ?70 ?80 ?60 ?20 ?40 ?50 ?10 ?30 sniffer receiver hd2 (dbc) 02 0 15 51 0 sniffer receiver attenuation (db) +110c +40c ?40c 14651-060 figure 119. sniffer receiver hd2 vs. sniffer receiver attenuation, 2600 mhz lo, cw signal 1 mhz offset, ?35 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 0 ?120 ?100 ?40 ?80 ?20 ?60 sniffer receiver hd3 (dbc) 02 0 10 15 5 sniffer receiver attenuation (db) +110c +40c ?40c 14651-061 figure 120. sniffer receiver hd3 vs. sniffer receiver attenuation, 2600 mhz lo, cw signal 1 mhz offset, ?35 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 20 mhz rf bandwidth, 30.72 msps sample rate 0 ?50 ?45 ?40 ?15 ?35 ?5 ?25 ?20 ?10 ?30 sniffer receiver evm (db) ?70 ?25 ?40 ?55 ?45 ?30 ?60 ?50 ?35 ?65 sniffer receiver input power (dbm) +110c +40c ?40c 14651-062 figure 121. sniffer receiver evm vs. sniffer receiver input power, 2600 mhz lo, 20 mhz rf bandwidth, lt e 20 mhz uplink centered at dc, btc active, 30.72 msps sample rate 40 ?40 ?30 0 ?10 20 ?20 10 30 sniffer receiver gain (db) 05 2 36 48 20 32 44 12 28 40 42 4 16 8 sniffer receiver attenuation (db) +110c +40c ?40c 14651-063 figure 122. sniffer receiver gain vs. sniffer receiver attenuation, 2600 mhz lo, cw signal 1 mhz offset, 20 mhz rf bandwidth, 30.72 msps sample rate
data sheet ad9371 rev. a | page 37 of 60 3.5 ghz band receiver lo leakage (dbm) receiver lo frequency (mhz) ?80 ?75 ?70 ?65 ?60 ?55 ?50 ?45 ?40 ?35 ? 30 3300 3400 3500 3600 3700 3800 +110c +40c ?40c 14651-064 figure 123. receiver local oscillator (lo) leakage vs. receiver lo frequency, 0 db receiver attenuation, 100 mhz rf bandwidth, 153.6 msps sample rate receiver noise figure (db) receiver attenuation (db) 0 5 10 15 20 25 30 35 40 45 +110c +40c ?40c 14651-065 figure 124. receiver noise figure vs. receiver attenuation, 3500 mhz lo, 100 mhz bandwidth, 153.6 msps sample rate, 50 mhz integration bandwidth (includes 1 db matching circuit loss) receiver noise figure (db) receiver lo frequency (mhz) 0 5 10 15 20 25 30 3300 3400 3500 3600 3700 3800 +110c +40c ?40c 14651-066 figure 125. receiver noise figure vs. receiver lo frequency, 0 db receiver attenuation, 100 mhz rf bandwidth, 153.6 msps sample rate, 50 mhz integration bandwidth (inclu des 1 db matching circuit loss) receiver iip2 (dbm) f 1 offset frequency (mhz) 0 10 20 30 40 50 60 70 80 90 51015202530354045505560 +110c +40c ?40c 14651-067 figure 126. receiver iip2 vs. f 1 offset frequency, 3500 mhz lo, 0 db attenuation, 100 mhz rf bandwidth, f 2 = f 1 + 1 mhz, 153.6 msps sample rate receiver iip2 (dbm) intermodulation frequency (mhz) 0 10 20 30 40 50 60 70 80 90 100 51015202530354045505560 f 2 ? f 1 , +110c f 2 ? f 1 , +40c f 2 ? f 1 , ?40c f 2 + f 1 , +110c f 2 + f 1 , +40c f 2 + f 1 , ?40c 14651-068 figure 127. receiver iip2 vs. intermodulation frequency, 3500 mhz lo, 0 db attenuation, 100 mhz rf band width, 153.6 msps sample rate receiver iip3 (dbm) f 1 offset frequency (mhz) 51015202530354045505560 0 5 10 15 20 25 30 35 40 +110c +40c ?40c 14651-069 figure 128. receiver iip3 vs. f 1 offset frequency, 3500 mhz lo, 0 db attenuation, 100 mhz rf bandwidth, f 2 = 2 f 1 + 1 mhz, 153.6 msps sample rate
ad9371 data sheet rev. a | page 38 of 60 receiver iip3 (dbm) intermodulation frequency (mhz) 51015202530354045505560 0 5 10 15 20 25 30 35 40 f 2 ? f 1 , +110c f 2 ? f 1 , +40c f 2 ? f 1 , ?40c f 2 + f 1 , +110c f 2 + f 1 , +40c f 2 + f 1 , ?40c 14651-070 figure 129. receiver iip3 vs. intermodulation frequency, 3500 mhz lo, 0 db attenuation, 100 mhz rf band width, 153.6 msps sample rate receiver image (dbc) receiver attenuation (db) ?110 ?100 ?90 ?80 ?70 ?60 ?50 ? 40 +110c +40c ?40c 14651-071 figure 130. receiver image vs. receiver attenuation, 3500 mhz lo, continuous wave (cw) signal 17 mhz offset, 100 mhz rf bandwidth, background tracking calibration (btc ) active, 153.6 msps sample rate receiver gain (db) receiver attenuation (db) ?15 ?10 ?5 0 5 10 15 20 25 +110c +40c ?40c 14651-072 figure 131. receiver gain vs. receiver attenuation, 3500 mhz lo, cw signal 17 mhz offset, 100 mhz rf bandwidth, de-embedded to r eceiver port, 153.6 msps sample rate receiver dc offset (dbfs) receiver attenuation (db) 0 5 10 15 20 25 30 ?120 ?110 ?100 ?90 ?80 ?70 ?60 ?50 ? 40 +110c +40c ?40c 14651-073 figure 132. receiver dc offset vs. receiver attenuation, 3500 mhz lo, 100 mhz rf bandwidth, 153.6 msps sample rate receiver hd2 (dbc) receiver attenuation (db) ?110 ?100 ?90 ?80 ?70 ?60 ?50 ? 40 +110c +40c ?40c 14651-074 figure 133. receiver hd2 vs. receiver attenuation, 3500 mhz lo, cw signal 17 mhz offset, ?14 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 100 mhz rf bandwidth, 153.6 msps sample rate receiver hd3 (dbc) receiver attenuation (db) ?110 ?100 ?90 ?80 ?70 ?60 ?50 ? 40 +110c +40c ?40c 14651-075 figure 134. receiver hd3 vs. receiver attenuation, 3500 mhz lo, cw signal 17 mhz offset, ?14 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 100 mhz rf bandwidth, 153.6 msps sample rate
data sheet ad9371 rev. a | page 39 of 60 receiver evm (db) receiver input power (dbm) ?45 ?40 ?35 ?30 ?25 ?20 ?15 ?10 ?5 0 ?60 ?55 ?50 ?45 ?40 ?35 ?30 ?25 ?20 ?15 ?10 ?5 0 +110c +40c ?40c 14651-076 figure 135. receiver error vector magnitude (evm) vs. receiver input power, 3600 mhz lo, 100 mhz rf bandwidth, lte 20 mhz uplink centered at dc, btc active, 153.6 msps sample rate rx2 to rx1 crosstalk (db) receiver lo frequency (mhz) ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 3300 3400 3500 3600 3700 3800 14651-077 figure 136. rx2 to rx1 crosstalk vs. receiver lo frequency, 100 mhz rf bandwidth, cw tone 3 mhz offset from lo receiver noise figure (db) close-in interferer signal power (dbm) 10 12 14 16 18 20 22 24 26 28 30 ?50 ?45 ?40 ?35 ?30 ?25 ?20 14651-078 +110c +40c ?40c figure 137. receiver noise figure vs. close-in interferer signal power, 3614 mhz lo, 3625 mhz cw interferer, noise figure integrated over 7 mhz to 10 mhz, 100 mhz rf bandwidth receiver noise figure (db) out-of-band interferer signal power (dbm) 0 5 10 15 20 25 30 ?30 ?25 ?20 ?15 ?10 ?5 0 14651-079 +110c +40c ?40c figure 138. receiver noise figure vs. out of band interferer signal power, 3614 mhz lo, 3665 mhz cw interferer, noise figure integrated over 7 mhz to 10 mhz transmitter image (dbc) rf attenuation (db) +110c +40c ?40c 14651-080 figure 139. transmitter image vs. rf attenuation, 100 mhz rf bandwidth, 3550 mhz lo, transmitter quadrature error correction (qec) tracking run with two 20 mhz, lte downlink carriers, then image measured with cw 10 mhz offset from lo, 6 db digital backoff, 307.2 msps sample rate transmitter image (dbc) desired offset frequency (mhz) ?50 ?40 ?30 ?20 ?10 0 10 20 30 40 50 +110c +40c ?40c 14651-081 figure 140. transmitter image vs. desired offset frequency, 100 mhz rf bandwidth, 3550 mhz lo, 0 db rf a ttenuation, transmitter qec tracking run with two 20 mhz lte downlink carriers, then image measured with cw signal, 6 db digital backoff, 307.2 msps sample rate
ad9371 data sheet rev. a | page 40 of 60 tx output (dbm) frequency (mhz) ?10 ?8 ?6 ?4 ?2 0 2 4 6 8 10 3300 3400 3500 3600 3700 3800 +110c +40c ?40c 14651-082 figure 141. tx output power, transmitter qec and external lo leakage active, 5 mhz cw offset signal, 1 mhz resolution bandwidth, 307.2 msps sample rate 0 5 10 15 20 transmitter lo leakage (dbfs) rf attenuation (db) ?95 ?90 ?85 ?80 ?75 ?70 ?65 ? 60 ?100 +110c +40c ?40c 14651-083 figure 142. transmitter lo leakage vs. rf attenuation, 3550 mhz lo, transmitter qec and external lo leakage tracking active, cw signal 10 mhz offset from lo, 6 db digital backoff, 1 mhz measurement bandwidth (if input power to orx channel is not held constant, performance degrades as shown in this plot) transmitter lo leakage (dbfs) offset frequency (mhz) 3.3ghz, +110c 3.3ghz, +40c 3.3ghz, ?40c 3.55ghz, +110c 3.55ghz, +40c 3.55ghz, ?40c 3.8ghz, +110c 3.8ghz, +40c 3.8ghz, ?40c ?30 ?20 ?10 0 10 20 30 14651-084 figure 143. transmitter lo leakage vs. offset frequency, transmitter qec and external lo leakage tracking active, 6 db digital backoff, 1 mhz measurement bandwidth tx1 to rx1 crosst a lk (db) receiver lo frequency (mhz) ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 3300 3400 3500 3600 3700 3800 14651-085 figure 144. tx1 to rx1 crosstalk vs. receiver lo frequency, 100 mhz receiver rf bandwidth, 100 mhz transmitter rf bandwidth, cw signal 3 mhz offset from lo 0 ?100 3300 3400 3500 3600 3700 3800 tx2 to rx2 crosstalk (db) receiver lo frequency (mhz) ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 14651-086 figure 145. tx2 to rx2 crosstalk vs. receiver lo frequency, 100 mhz receiver rf bandwidth, 100 mhz transmitter rf bandwidth, cw signal 3 mhz offset from lo 0 ?100 3300 3800 tx2 to tx1 crosstalk (db) transmitter lo frequency (mhz) 3400 3500 3600 3700 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 14651-087 figure 146. tx2 to tx1 crosstalk vs. transmitter lo frequency, 100 mhz rf bandwidth, cw signal 3 mhz offset from lo
data sheet ad9371 rev. a | page 41 of 60 ? 80 ?180 transmitter noise (dbm/hz) ?170 ?160 ?150 ?140 ?130 ?120 ?110 ?100 ?90 020 51015 rf attenuation (db) +110c +40c ?40c 14651-088 figure 147. transmitter noise vs. rf attenuation, 3500 mhz lo, 100 mhz offset frequency, zeros input data 02 0 51 01 5 ? 40 ?80 tx adjacent channel leakage ratio (db) rf attenuation (db) ?75 ?70 ?65 ?60 ?55 ?50 ?45 +110c upper +40c upper ?40c u pper +110c lower +40c lower ?40c lower 14651-089 figure 148. tx adjacent channel leakage ratio vs. rf attenuation, 3500 mhz lo, 100 mhz rf bandwidth, four-carrier w-cdma desired signal, 2 db digital backoff, transmitter qec and lo leakage tracking active ? 40 ?80 020 tx alternate channel leakage ratio (db) rf attenuation (db) ?75 ?70 ?65 ?60 ?55 ?50 ?45 51 01 5 +110c upper +40c upper ?40c upper +110c lower +40c lower ?40c lower 14651-090 figure 149. tx alternate channel leakage ratio vs. rf attenuation, 3500 mhz lo, 100 mhz rf bandwidth, four-carrier w-cdma desired signal, 2 db digital backoff, transmitter qec and lo leakage tracking active ? 60 ?150 100 10m lo phase noise (dbc) offset frequency (hz) ?140 ?130 ?120 ?110 ?100 ?90 ?80 ?70 1k 10k 100k 1m 14651-091 figure 150. lo phase noise vs. offset frequency, 3 db digital backoff, 3500 mhz lo 1.0 0 3300 3800 tx integrated phase noise (degrees) transmitter lo frequency (mhz) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3400 3500 3600 3700 +110c +40c ?40c 14651-092 figure 151. tx integrated phase noise vs. transmitter lo frequency, 100 mhz rf bandwidth, cw 20 mhz offset from lo, 3 db digital backoff 35 0 020 transmitter oip3 (dbm) rf attenuation (db) 5 10 15 20 25 30 2 4 6 8 10 12 14 16 18 +110c +40c ?40c 14651-093 figure 152. transmitter oip3 vs. rf attenuation, 3500 mhz lo, 100 mhz rf bandwidth, f 1 = 20 mhz, f 2 = 21 mhz, 3 db digital backoff, 307.2 msps sample rate
ad9371 data sheet rev. a | page 42 of 60 3400 3600 frequency (mhz) 0 ?100 tx output (dbm) ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 3425 3450 3475 3500 3525 3550 3575 14651-094 figure 153. tx output power spectrum, 2 db digital and 3 db rf backoff, 100 mhz rf bandwidth, transmitter qec and internal lo leakage active, lte 10 mhz signal, 3500 mhz lo, 1 mhz resolution bandwidth, 307.2 msps sample rate 0 ?100 3000 4000 tx output (dbm) frequency (mhz) ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 3100 3200 3300 3400 3500 3600 3700 3800 3900 14651-095 figure 154. tx output power spectrum, 2 db digital and 3 db rf backoff, 100 mhz rf bandwidth, transmitter qec and internal lo leakage active, lte 10 mhz signal, 3500 mhz lo, 1 mhz resolution bandwidth, 307.2 msps sample rate (noise floo r includes test equipment response) ? 20 ?50 020 transmitter evm (db) rf attenuation (db) ?45 ?40 ?35 ?30 ?25 51015 +110c +40c ?40c 14651-096 figure 155. transmitter evm vs. rf attenuation, 3500 mhz lo, transmitter lo leakage, and transmitter qec tracking active, 100 mhz rf bandwidth, lte 20 mhz downlink signal, 307.2 msps sample rate 0 ?100 020 transmitter hd2 (dbc) rf attenuation (db) ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 51015 +110c +40c ?40c 14651-097 figure 156. transmitter hd2 vs. rf attenuation, 3500 mhz lo, 3505 mhz cw desired signal, 100 mhz rf bandwidth, 307.2 msps sample rate 0 ?80 020 transmitter hd3 (dbc) rf attenuation (db) ?70 ?60 ?50 ?40 ?30 ?20 ?10 51015 +110c +40c ?40c 14651-098 figure 157. transmitter hd3 vs. rf attenuation, 3500 mhz lo, 3505 mhz cw desired signal, 100 mhz rf bandwidth, 307.2 msps sample rate 10 ?25 020 transmitter output power (dbm) rf attenuation (db) ?20 ?15 ?10 ?5 0 5 51015 +110c +40c ?40c 14651-099 figure 158. transmitter output powe r vs. rf attenuatio n, 3500 mhz lo, 3505 mhz cw desired signal, 100 mhz rf bandwidth, 2 db digital backoff, 307.2 msps sample rate
data sheet ad9371 rev. a | page 43 of 60 0.10 ?0.10 02 0 tx attenuation step error (db) rf attenuation (db) ?0.08 ?0.06 ?0.04 ?0.02 0 0.02 0.04 0.06 0.08 2 4 6 8 10 12 14 16 18 +110c +40c ?40c 14651-100 figure 159. tx attenuation step erro r vs. rf attenuatio n, 3500 mhz lo, 3510 mhz cw desired signal, 100 mhz rf bandwidth, de-embedded to transmitter port, 307.2 msps sample rate 1.0 ?1.0 ?100 100 deviation from flatness (db) frequency offset from lo (mhz) ?0.8 ?0.6 ?0.4 ?0.2 0 0.2 0.4 0.6 0.8 ?80 ?60 ?40 ?20 0 20 40 60 80 14651-101 figure 160. transmitter frequency response deviation from flatness vs. frequency offset from lo, 3500 mhz lo, 100 mhz rf bandwidth, 6 db digital backoff, 307.2 msps sample rate ? 40 ?80 3300 3800 observation receiver lo leakage (dbm) observation receiver lo frequency (mhz) ?75 ?70 ?65 ?60 ?55 ?50 ?45 3400 3500 3600 3700 +110c +40c ?40c 14651-102 figure 161. observation receiver lo leakage vs. observation receiver lo frequency, 0 db receiver atte nuation, 240 mhz rf bandwidth, 307.2 msps sample rate 30 0 3300 3800 observation receiver noise figure (db) observation receiver lo frequency (mhz) 5 10 15 20 25 3400 3500 3600 3700 +110c +40c ?40c 14651-103 figure 162. observation receiver noise figure vs. observation receiver lo frequency, 0 db receiver attenuat ion, 240 mhz rf bandwidth, 307.2 msps sample rate, 120 mhz integration bandwidth 80 0 0 110 observation receiver iip2 (dbm) f 1 offset frequency (mhz) 10 20 30 40 50 60 70 10 20 30 40 50 60 70 80 90 100 +110c +40c ?40c 14651-104 figure 163. observatio n receiver iip2 vs. f 1 offset frequency, 3600 mhz lo, 0 db attenuation, 240 mhz rf bandwidth, f 2 = f 1 + 1 mhz, 307.2 msps sample rate 80 0 5115 observation receiver iip2 (dbm) intermodulation frequency (mhz) 15 25 35 45 55 65 75 85 95 105 10 20 30 40 50 60 70 +110c +40c ?40c 14651-105 figure 164. observation receiver iip2 vs. intermodulation frequency (f 2 ? f 1 ), 3500 mhz lo, 0 db attenuation, 240 mhz rf bandwidth, 307.2 msps sample rate
ad9371 data sheet rev. a | page 44 of 60 40 0 0 110 observation receiver iip3 (dbm) f 1 offset frequency (mhz) 5 10 15 20 25 30 35 10 20 30 40 50 60 70 80 90 100 +110c +40c ?40c 14651-106 figure 165. observatio n receiver iip3 vs. f 1 offset frequency, 3600 mhz lo, 0 db attenuation, 240 mhz rf bandwidth, f 2 = 2f 1 + 1 mhz, 307.2 msps sample rate 40 0 5 115 observation receiver iip3 (dbm) intermodulation frequency (mhz) 5 10 15 20 25 30 35 15 25 35 45 55 65 75 85 95 105 +110c +40c ?40c 14651-107 figure 166. observation receiver iip3 vs. intermodulation frequency (f 2 ? 2f 1 ), 3500 mhz lo, 0 db attenuation, 240 mhz rf bandwidth, 307.2 msps sample rate 0 ?100 018 observation receiver image (dbc) observation receiver attenuation (db) ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 3691215 +110c +40c ?40c 14651-108 figure 167. observation receiver image vs. observation receiver attenuation, 3500 mhz lo, cw signal 25 mhz offset, 240 mhz rf bandwidth, btc active, 307.2 msps sample rate 25 ?15 018 observation receiver gain (db) observation receiver attenuation (db) ?10 ?5 0 5 10 15 20 3691215 +110c +40c ?40c 14651-109 figure 168. observation re ceiver gain vs. observation receiver attenuation, 3500 mhz lo, cw signal 25 mhz offset, 240 mhz rf bandwidth, de-embedded to receiver port, 307.2 msps sample rate ? 40 ?110 018 observation receiver dc offset (dbfs) observation receiver attenuation (db) ?100 ?90 ?80 ?70 ?60 ?50 3691215 +110c +40c ?40c 14651-110 figure 169. observation receiver dc offset vs. observation receiver attenuation, 3500 mhz lo, 240 mhz rf bandwidth, 307.2 msps sample rate 0 ?120 018 observation receiver hd2 (dbc) observation receiver attenuation (db) ?100 ?80 ?60 ?40 ?20 3691215 +110c +40c ?40c 14651-111 figure 170. observation receiver hd2 vs. observation receiver attenuation, 3500 mhz lo, cw signal 25 mhz offset, ?20 dbm at 0 db attenuation, input power increasing decibel fo r decibel with attenuation, 240 mhz rf bandwidth, 307.2 msps sample rate
data sheet ad9371 rev. a | page 45 of 60 0 ?100 018 observation receiver hd3 (dbc) observation receiver attenuation (db) ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 3691215 +110c +40c ?40c 14651-112 figure 171. observation receiver hd3 vs. observation receiver attenuation, 3500 mhz lo, cw signal 25 mhz offset, ?20 dbm at 0 db attenuation, input power increasing decibel fo r decibel with attenuation, 240 mhz rf bandwidth, 307.2 msps sample rate ? 40 ?120 sniffer receiver lo leakage (dbm) sniffer receiver lo frequency (mhz) ?110 ?100 ?90 ?80 ?70 ?60 ?50 3300 3800 3400 3500 3600 3700 +110c +40c ?40c 14651-113 figure 172. sniffer receiver lo leakage vs. sniffer receiver lo frequency, 0 db receiver attenuation, 20 mhz rf bandwidth, 38.4 msps sample rate 20 0 3300 3800 sniffer receiver noise figure (db) sniffer receiver lo frequency (mhz) 3400 3500 3600 3700 2 4 6 8 10 12 14 16 18 +110c +40c ?40c 14651-114 figure 173. sniffer receiver noise figure vs. sniffer receiver lo frequency, 0 db receiver attenuation, 20 mhz rf bandwidth, 38.4 msps sample rate, 10 mhz integration bandwidth 90 0 218 sniffer receiver iip2 (dbm) intermodulation frequency (mhz) 10 20 30 40 50 60 70 80 61014 +110c +40c ?40c 14651-115 figure 174. sniffer receiver iip2 vs. intermodulation frequency (f 2 ? f 1 ), 3500 mhz lo, 0 db attenuation, 20 mhz rf bandwidth, 38.4 msps sample rate 20 ?10 01 2 sniffer receiver iip3 (dbm) intermodulation frequency (mhz) ?5 0 5 10 15 246810 +110c +40c ?40c 14651-116 figure 175. sniffer receiver iip3 vs. intermodulation frequency (f 2 ? 2f 1 ), 3500 mhz lo, 0 db attenuation, 20 mhz rf bandwidth, 38.4 msps sample rate 0 ?100 050 sniffer receiver image (dbc) sniffer receiver attenuation (db) ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 5 1015202530354045 +110c +40c ?40c 14651-117 figure 176. sniffer receiver image vs. sniffer receiver attenuation, 3500 mhz lo, cw signal 5 mhz offset, 20 mhz rf bandwidth, 38.4 msps sample rate
ad9371 data sheet rev. a | page 46 of 60 ? 40 ?110 020 sniffer receiver dc offset (dbfs) sniffer receiver attenuation (db) ?100 ?90 ?80 ?70 ?60 ?50 51015 +110c +40c ?40c 14651-118 figure 177. sniffer receiver dc offset vs. sniffer receiver attenuation, 3500 mhz lo, cw signal 5 mhz offset, ?35 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 20 mhz rf bandwidth, 38.4 msps sample rate 0 ?100 020 sniffer receiver hd2 (dbc) sniffer receiver attenuation (db) ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 51015 +110c +40c ?40c 14651-119 figure 178. sniffer receiver hd2 vs. sniffer receiver attenuation, 3500 mhz lo, cw signal 5 mhz offset, ?35 dbm at 0 db attenuation, input power increasing decibel fo r decibel with attenuation, 20 mhz rf bandwidth, 38.4 msps sample rate 0 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 02 0 sniffer receiver hd3 (dbc) sniffer receiver attenuation (db) ?10 51015 +110c +40c ?40c 14651-120 figure 179. sniffer receiver hd3 vs. sniffer receiver attenuation, 3500 mhz lo, cw signal 5 mhz offset, ?35 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation, 20 mhz rf bandwidth, 38.4 msps sample rate 0 ?45 ?70 ?30 sniffer receiver evm (db) sniffer receiver input power (dbm) ?40 ?35 ?30 ?25 ?20 ?15 ?10 ?5 ?65 ?60 ?55 ?50 ?45 ?40 ?35 +110c +40c ?40c 14651-121 figure 180. sniffer receiver evm vs. sniffer receiver input power, 3600 mhz lo, 20 mhz rf bandwidth, lt e 20 mhz uplink centered at dc, btc active, 38.4 msps sample rate 35 ?35 05 5 sniffer receiver gain (db) sniffer receiver attenuation (db) ?25 ?15 ?5 5 15 25 5 101520253035404550 +110c +40c ?40c 14651-122 figure 181. sniffer receiver gain vs. sniffer receiver attenuation, 3600 mhz lo, cw signal 5 mhz offset, 20 mhz rf bandwidth, de-embedded to receiver port, 38.4 msps sample rate
data sheet ad9371 rev. a | page 47 of 60 5.5 ghz band ? 30 ?100 5300 5900 receiver lo leakage (dbm) receiver lo frequency (mhz) ?90 ?80 ?70 ?60 ?50 ?40 5400 5500 5600 5700 5800 +110c +40c ?40c 14651-223 figure 182. receiver local oscillator (lo) leakage vs. receiver lo frequency, 0 db receiver attenuation, 100 mhz rf bandwidth, 122.88 msps sample rate 45 0 015 receiver noise figure (db) receiver attenuation (db) 5 10 15 20 25 35 30 40 36912 +110c +40c ?40c 14651-224 figure 183. receiver noise figure vs. receiver attenuation, 5600 mhz lo, 100 mhz bandwidth, 122.88 msps sample rate, 50 mhz integration bandwidth (includes 1.2 db matching circuit loss) 30 0 5300 5900 receiver noise figure (db) receiver lo frequency (mhz) 5 10 15 20 25 5400 5500 5600 5700 5800 +110c +40c ?40c 14651-225 figure 184. receiver noise figure vs. receiver lo frequency, 0 db receiver attenuation, 100 mhz rf bandwidth, 122.88 msps sample rate, 50 mhz integration bandwidth (includes 1. 2 db matching circuit loss) 100 90 80 70 60 50 40 30 20 10 0 060 receiver iip2 (dbm) f 1 offset frequency (mhz) 20 40 10 30 50 +110c +40c ?40c 14651-185 figure 185. receiver iip2 vs. f 1 offset frequency, 5600 mhz lo, 0 db attenuation, 100 mhz rf bandwidth, f 2 = f 1 + 1 mhz, 122.88 msps sample rate 100 0 15 45 receiver iip2 (dbm) intermodulation frequency (mhz) 10 30 50 70 90 20 40 60 80 20 25 30 35 40 f 2 + f 1 , +110c f 2 + f 1 , +40c f 2 + f 1 , ?40c f 2 ? f 1 , +110c f 2 ? f 1 , +40c f 2 ? f 1 , ?40c 14651-226 figure 186. receiver iip2 vs. intermodulation frequency, 5600 mhz lo, 0 db attenuation, 100 mhz rf band width, 122.88 msps sample rate 40 35 30 25 20 15 10 5 0 060 receiver iip3 (dbm) f 1 offset frequency (mhz) 20 40 10 30 50 +110c +40c ?40c 14651-187 figure 187. receiver iip3 vs. f 1 offset frequency, 5600 mhz lo, 0 db attenuation, 100 mhz rf bandwidth, f 2 = 2 f 1 + 2 mhz, 122.88 msps sample rate
ad9371 data sheet rev. a | page 48 of 60 40 0 10 15 35 receiver iip3 (dbm) intermodulation frequency (mhz) 10 20 5 15 25 30 35 20 25 30 +110c +40c ?40c 14651-227 figure 188. receiver iip3 vs. intermodulation frequency, 5600 mhz lo, 0 db attenuation, 100 mhz rf bandwi dth, 122.88 msps sample rate ? 40 ?100 030 receiver image (dbc) receiver attenuation (db) ?80 ?90 ?70 ?60 ?50 51525 10 20 +110c +40c ?40c 14651-228 figure 189. receiver image vs. receiver attenuation, 5600 mhz lo, continuous wave (cw) signal 10 mhz offset, 100 mhz rf bandwidth, background tracking calibration (btc) active, 122.88 msps sample rate 20 ?20 03 0 receiver gain (db) receiver attenuation (db) ?10 ?15 ?5 5 15 0 10 51525 10 20 +110c +40c ?40c 14651-229 figure 190. receiver gain vs. receiver attenuation, 5600 mhz lo, cw signal 10 mhz offset, 100 mhz rf bandwidth, 122.88 msps sample rate ? 40 ?110 030 receiver dc offset (dbfs) receiver attenuation (db) ?90 ?100 ?80 ?60 ?70 ?50 51525 10 20 +110c +40c ?40c 14651-230 figure 191. receiver dc offset vs. receiver attenuation, 5850 mhz lo, 100 mhz rf bandwidth, 122.88 msps sample rate ? 40 ?110 030 receiver hd2 (dbc) receiver attenuation (db) ?90 ?100 ?80 ?60 ?70 ?50 51525 10 20 +110c +40c ?40c 14651-231 figure 192. receiver hd2 vs. receiver attenuation, 5600 mhz lo, cw signal 10 mhz offset, ?20 dbm at 0 db attenuation, input power increasing decibel fo r decibel with attenuation, 100 mhz rf bandwidth, 122.88 msps sample rate ? 40 ?110 030 receiver hd3 (dbc) receiver attenuation (db) ?90 ?100 ?80 ?60 ?70 ?50 51525 10 20 +110c +40c ?40c 14651-232 figure 193. receiver hd3 vs. receiver attenuation, 5600 mhz lo, cw signal 10 mhz offset, ?20 dbm at 0 db attenuation, input power increasing decibel for decibel with attenuation,100 mhz rf bandwidth, 122.88 msps sample rate
data sheet ad9371 rev. a | page 49 of 60 0 ?45 ?55 0 receiver evm (db) receiver input power (dbm) ?35 ?40 ?30 ?15 ?25 ?5 ?20 ?10 ?45 ?25 ?5 ?35 ?15 ?50 ?30 ?10 ?40 ?20 +110c +40c ?40c 14651-233 figure 194. receiver error vector magnitude (evm) vs. receiver input power, 5600 mhz lo, 100 mhz rf bandwidth lte, 20 mhz uplink centered at dc, btc active, 122.88 msps sample rate 0 ?100 5300 5900 rx2 to rx1 crosstalk (db) receiver lo frequency (mhz) ?70 ?80 ?90 ?60 ?30 ?50 ?10 ?40 ?20 5500 5700 5400 5800 5600 14651-234 figure 195. rx2 to rx1 crosstalk vs. receiver lo frequency, 100 mhz rf bandwidth, cw tone 3 mhz offset from lo 30 0 ?40 0 receiver noise figure (db) out-of-band interferer signal power (dbm) 15 5 25 10 20 ?25 ?5 ?35 ?15 ?30 ?10 ?20 +110c +40c ?40c 14651-235 figure 196. receiver noise figure vs. out-of-band interferer signal power, 5400 mhz lo, 5600 mhz cw interferer, nf integrated over 7 mhz to 10 mhz 0 ?100 020 transmitter image (dbc) rf attenuation (db) ?70 ?80 ?90 ?60 ?30 ?50 ?10 ?40 ?20 10 515 +110c +40c ?40c 14651-236 figure 197. transmitter image vs. rf attenuation, 75 mhz rf bandwidth, 5600 mhz lo, 0 db rf attenuation, transmitter quadrature error correction (qec) tracking run with two 20 mhz lte downlink carriers, then image measured with cw 10 mhz offset from lo, 3 db digital backoff, 245.76 msps sample rate 0 ?100 ?40 40 transmitter image (dbc) desired offset frequency (mhz) ?70 ?80 ?90 ?60 ?30 ?50 ?10 ?40 ?20 0 ?20 20 30 ?10 ?30 10 +110c +40c ?40c 14651-237 figure 198. transmitter image vs. desired offset frequency, 75 mhz rf bandwidth, 5600 mhz lo, 0 db rf a ttenuation, transmitter qec tracking run with two 20 mhz lte downlink carriers, then image measured with cw signal, 3 db digital backoff, 245.76 msps sample rate 10 ?10 5300 5900 tx output (dbm) receiver lo frequency (mhz) ?8 ?4 0 4 8 ?6 ?2 2 6 5400 5500 5600 5700 5800 +110c +40c ?40c 14651-238 figure 199. tx output power, transmitter qec, and external lo leakage active, 5 mhz cw offset signal, 1 mhz resolution bandwidth, 245.76 msps sample rate
ad9371 data sheet rev. a | page 50 of 60 ? 40 ?100 020 transmitter lo leakage (dbfs) rf attenuation (db) ?90 ?70 ?80 ?60 ?50 51015 +110c +40c ?40c 14651-239 figure 200. transmitter lo leakage vs. rf attenuation, 5600 mhz lo, external transmitter qec, and lo leakage tracking active, cw signal 10 mhz offset from lo, 6 db digital backoff, 1 mhz measurement bandwidth ? 60 ?100 ?40 40 transmitter lo leakage (dbfs) offset frequency (mhz) ?90 ?75 ?80 ?95 ?85 ?70 ?65 ?20 0 20 30 ?30 ?10 10 5.9ghz, +110c 5.9ghz, +40c 5.9ghz, ?40c 5.6ghz, +110c 5.6ghz, +40c 5.6ghz, ?40c 5.3ghz, +110c 5.3ghz, +40c 5.3ghz, ?40c 14651-240 figure 201. transmitter lo leakage vs. offset frequency, external transmitter qec and lo leakage tracking active, 6 db digital backoff, 1 mhz measurement bandwidth 0 ?100 5300 5900 tx1 to rx1 crosstalk (db) receiver lo frequency (mhz) ?90 ?70 ?50 ?30 ?10 ?80 ?60 ?40 ?20 5400 5500 5600 5700 5800 14651-241 figure 202. tx1 to rx1 crosstalk vs. receiver lo frequency, 100 mhz receiver rf bandwidth, 75 mhz transmitter rf bandwidt h, cw signal 3 mhz offset from lo 0 ?100 5300 5900 tx2 to rx2 crosstalk (db) receiver lo frequency (mhz) ?90 ?70 ?50 ?30 ?10 ?80 ?60 ?40 ?20 5400 5500 5600 5700 5800 14651-242 figure 203. tx2 to rx2 crosstalk vs. receiver lo frequency, 100 mhz receiver rf bandwidth, 75 mhz transmitter rf bandwidth, cw signal 3 mhz offset from lo ?110 ?100 5300 5900 tx2 to tx1 crosstalk (db) transmitter lo frequency (mhz) ?90 ?70 ?50 ?30 ? 10 ?80 ?60 ?40 ?20 5400 5500 5600 5700 5800 14651-243 figure 204. tx2 to tx1 crosstalk vs. transmitter lo frequency, 75 mhz rf bandwidth, cw sign al 3 mhz offset from lo ? 80 ?180 020 transmitter noise (dbm/hz) rf attenuation (db) ?170 ?140 ?160 ?120 ?100 ?130 ?150 ?110 ?90 51015 +110c +40c ?40c 14651-244 figure 205. transmitter noise vs. rf attenuation, 5600 mhz lo, 1 mhz offset frequency
data sheet ad9371 rev. a | page 51 of 60 ? 40 ?80 020 tx adjacent channel leakage ratio (db) rf attenuation (db) ?70 ?60 ?50 ?65 ?75 ?55 ?45 51 01 5 +110c lower +40c lower ?40c lower +110c upper +40c upper ?40c upper 14651-245 figure 206. tx adjacent channel leakage ratio vs. rf attenuation, 5600 mhz lo, 75 mhz rf bandwidth, four-carrier w-cdma desired signal, transmitter qec and lo leakage tracking active ? 40 ?80 020 tx alternate channel leakage ratio (db) rf attenuation (db) ?70 ?60 ?50 ?65 ?75 ?55 ?45 51 01 5 +110c lower +40c lower ?40c lower +110c upper +40c upper ?40c upper 14651-246 figure 207. tx alternate channel leakage ratio vs. rf attenuation, 5600 mhz lo, 75 mhz rf bandwidth, four-carrier w-cdma desired signal, 2 db digital backoff, transmitter qec and lo leakage tracking active ? 60 ?150 100 10m lo phase noise (dbc) offset frequency (hz) ?120 ?100 ?80 ?110 ?140 ?130 ?90 ?70 1k 100k 10k 1m 14651-247 figure 208. lo phase noise vs. offset frequency, 3 db digital backoff, 5850 mhz lo 1.0 0 5300 5900 tx integrated phase noise (degrees) transmitter lo frequency (mhz) 0.1 0.3 0.5 0.7 0.9 0.2 0.4 0.6 0.8 5400 5500 5600 5700 5800 +110c +40c ?40c 14651-248 figure 209. tx integrated phase noise vs. transmitter lo frequency, 75 mhz rf bandwidth, cw 10 mhz offs et from lo, 3 db digital backoff 30 0 020 transmitter oip3 (dbm) rf attenuation (db) 10 20 5 15 25 51015 +110c +40c ?40c 14651-249 figure 210. transmitter oip3 vs. rf attenuation, 5600 mhz lo, 75 mhz rf bandwidth, f 1 = 20 mhz, f 2 = 21 mhz, 3 db digital backoff, 245.76 msps sample rate 0 ?100 5750 5950 tx output (dbm) frequency (mhz) ?90 ?70 ?50 ?30 ?10 ?80 ?60 ?40 ?20 5775 5800 5825 5850 5900 5875 5925 14651-250 figure 211. tx output power spectrum, 3 db digital and 1 db rf backoff, 40 mhz rf bandwidth, transmitter qec, and internal lo leakage active, lte 10 mhz signal, 5850 mhz lo, 1 mhz resolution bandwidth, 122.88 msps sample rate, test equipment noise floor de-embedded
ad9371 data sheet rev. a | page 52 of 60 0 ?100 5350 6350 tx output (dbm) frequency (mhz) ?90 ?70 ?50 ?30 ?10 ?80 ?60 ?40 ?20 5450 5550 5650 5750 5950 5850 6150 6050 6250 14651-251 figure 212. tx output power spectrum, 3 db digital and 1 db rf backoff, 40 mhz rf bandwidth, transmitter qec, and internal lo leakage active, lte 10 mhz signal, 5850 mhz lo, 1 mhz resolution bandwidth, 122.88 msps sample rate, test equipment noise floor de-embedded ? 20 ?50 020 transmitter evm (db) rf attenuation (db) ?45 ?35 ?40 ?30 ?25 51015 +110c +40c ?40c 14651-252 figure 213. transmitter evm vs. rf attenuation, 5600 mhz lo, transmitter lo leakage, and transmitter qec tracki ng active, 75 mhz rf bandwidth, lte 20 mhz downlink signal, 245.76 msps sample rate 0 ?100 020 transmitter hd2 (dbc) rf attenuation (db) ?70 ?80 ?90 ?60 ?30 ?50 ?10 ?40 ?20 10 515 +110c +40c ?40c 14651-253 figure 214. transmitter hd2 vs. rf attenuation, 5850 mhz lo, 5855 mhz cw desired signal, 75 mhz rf bandwi dth, 245.76 msps sample rate 0 ?80 020 transmitter hd3 (dbc) rf attenuation (db) ?70 ?60 ?30 ?50 ?10 ?40 ?20 10 515 +110c +40c ?40c 14651-254 figure 215. transmitter hd3 vs. rf attenuation, 5850 mhz lo, 5855 mhz cw desired signal, 75 mhz rf bandwidth, 245.76 msps sample rate 10 ?20 025 20 transmitter output power (dbm) rf attenuation (db) ?5 ?15 5 ?10 0 10 515 +110c +40c ?40c 14651-255 figure 216. transmitter output powe r vs. rf attenuatio n, 5850 mhz lo, 5855 mhz cw desired signal, 75 mhz rf bandwidth, 245.76 msps sample rate 0.10 ?0.10 020 tx attenuation step error (db) rf attenuation (db) ?0.02 ?0.04 ?0.08 0.08 ?0.06 0.02 0.06 0.04 0 10 515 +110c +40c ?40c 14651-256 figure 217. tx attenuation step erro r vs. rf attenuatio n, 5850 mhz lo, 5855 mhz cw desired signal, 75 mhz rf bandwidth, 245.76 msps sample rate
data sheet ad9371 rev. a | page 53 of 60 0.5 ?0.5 ?100 100 deviation from flatness (db) frequency offset from lo (mhz) ?0.1 ?0.2 ?0.4 0.4 ?0.3 0.1 0.3 0.2 0 20 ?40 80 0 ?60 60 ?20 ?80 40 14651-257 figure 218. transmitter frequency response deviation from flatness vs. frequency offset from lo, 5850 mhz lo, 200 mhz synthesis bandwidth, 6 db digital backoff, 245.76 msps sample rate ? 40 ?80 5300 5900 observation receiver lo leakage (dbm) observation receiver lo frequency (mhz) ?75 ?65 ?55 ?45 ?70 ?60 ?50 5400 5500 5600 5700 5800 +110c +40c ?40c 14651-258 figure 219. observation receiver lo leakage vs. observation receiver lo frequency, 0 db receiver atte nuation, 200 mhz rf bandwidth, 245.76 msps sample rate 30 0 5300 5900 observation receiver noise figure (db) observation receiver lo frequency (mhz) 5 15 25 10 20 5400 5500 5600 5700 5800 +110c +40c ?40c 14651-259 figure 220. observation receiver noise figure vs. observation receiver lo frequency, 0 db receiver atte nuation, 200 mhz rf bandwidth, 245.76 msps sample rate, 100 mhz integration bandwidth 80 0 0 10 110 observation receiver iip2 (dbm) f 1 offset frequency (mhz) 10 30 70 20 50 60 40 20 40 60 80 30 50 70 90 100 +110c +40c ?40c 14651-221 figure 221. observatio n receiver iip2 vs. f 1 offset frequency, 5600 mhz lo, 0 db attenuation, 200 mhz rf bandwidth, f 2 = f 1 + 1 mhz, 245.76 msps sample rate 80 0 10 110 observation receiver iip2 (dbm) intermodulation frequency (mhz) 10 30 70 20 50 60 40 20 40 60 80 30 50 70 90 100 +110c +40c ?40c 14651-260 figure 222. observation receiver iip2 vs. intermodulation frequency (f 2 ? f 1 ), 5600 mhz lo, 0 db attenuation, 200 mhz rf bandwidth, 245.76 msps sample rate 14651-222 40 35 30 25 20 15 10 5 0 0 110100908070 60 5040302010 observation receiver iip3 (dbm) f 1 offset frequency (mhz) +110c +40c ?40c figure 223. observatio n receiver iip3 vs. f 1 offset frequency, 5600 mhz lo, 0 db attenuation, 200 mhz rf bandwidth, f 2 = 2 f 1 + 1 mhz, 245.76 msps sample rate
ad9371 data sheet rev. a | page 54 of 60 40 0 5 115 observation receiver iip3 (dbm) intermodulation frequency (mhz) 5 15 35 10 25 30 20 15 35 55 75 25 45 65 85 95 105 +110c +40c ?40c 14651-261 figure 224. observation receiver iip3 vs. intermodulation frequency (f 2 ? 2f 1 ), 5600 mhz lo, 0 db attenuation, 200 mhz rf bandwidth, 245.76 msps sample rate 0 ?100 018 observation receiver image (dbc) observation receiver attenuation (db) ?70 ?80 ?90 ?60 ?30 ?50 ?10 ?40 ?20 6 312 915 +110c +40c ?40c 14651-262 figure 225. observation receiver image vs. observation receiver attenuation, 5600 mhz lo, cw signal 30 mhz offset, 200 mhz rf bandwidth, btc active, 245.76 msps sample rate 25 ?15 018 observation receiver gain (dbc) observation receiver attenuation (db) ?10 ?5 10 0 20 5 15 6 312 915 +110c +40c ?40c 14651-263 figure 226. observation re ceiver gain vs. observation receiver attenuation, 5600 mhz lo, cw signal 30 mhz offset, 200 mhz rf bandwidth, 245.76 msps sample rate ? 40 ?50 ?60 ?70 ?80 ?90 ?10 ?110 018 15 12 9 6 3 observation receiver dc offset (dbfs) observation receiver attenuation (db) +110c +40c ?40c 14651-264 figure 227. observation receiver dc offset vs. observation receiver attenuation, 5850 mhz lo, cw signal 30 mhz offset, ?15 dbm input, 200 mhz rf bandwidth, 245.76 msps sample rate 0 ?100 018 observation receiver hd2 (dbc) observation receiver attenuation (db) ?90 ?80 ?70 ?50 ?30 ?10 ?60 ?40 ?20 6 312 915 +110c +40c ?40c 14651-265 figure 228. observation receiver hd2 vs. observation receiver attenuation, 5600 mhz lo, cw signal 30 mhz offset, ?15 dbm input, input power increasing decibel for decibel with at tenuation, 200 mhz rf bandwidth, 245.76 msps sample rate 0 ?120 ?100 018 observation receiver hd3 (dbc) observation receiver attenuation (db) ?80 ?60 ?40 ?20 6 312 915 +110c +40c ?40c 14651-266 figure 229. observation receiver hd3 vs. observation receiver attenuation, 5600 mhz lo, cw signal 30 mhz offset, ?15 dbm input, input power increasing decibel for decibel with at tenuation, 200 mhz rf bandwidth, 245.76 msps sample rate
data sheet ad9371 rev. a | page 55 of 60 ? 40 ?100 ?90 ?80 ?70 ?60 ?50 5300 5900 sniffer receiver lo leakage (dbm) sniffer receiver lo frequency (mhz) 5400 5500 5600 5700 5800 +110c +40c ?40c 14651-430 figure 230. sniffer receiver lo leakage vs. sniffer receiver lo frequency, 0 db receiver attenuation, 20 mhz rf bw, 30.72 msps sample rate 20 18 16 14 12 10 8 6 4 2 0 5300 5900 sniffer receiver noise figure (db) sniffer receiver lo frequency (mhz) 5400 5500 5600 5700 5800 +110c +40c ?40c 14651-431 figure 231. sniffer receiver noise figure vs. sniffer receiver lo frequency, 0 db receiver attenuation, 20 mhz rf bw, 38.4 msps sample rate, 10 mhz integration bw 90 80 70 60 50 40 30 20 10 0 31 5 sniffer receiver iip2 (db) intermodulation frequency (mhz) 6912 +110c +40c ?40c 14651-432 figure 232. sniffer receiver iip2 vs. intermodulation frequency (f 2 ? f 1 ), 5600 mhz lo, 0 db attenuation, 20 mhz rf bw, 30.72 msps sample rate 20 ?10 ?5 0 5 10 15 315 sniffer receiver iip3 (db) intermodulation frequency (mhz) 6912 +110c +40c ?40c 14651-433 figure 233. sniffer receiver iip3 vs. intermodulation frequency (f 2 ? 2f 1 ), 5600 mhz lo, 0 db attenuation, 20 mhz rf bw, 30.72 msps sample rate 0 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 02 0 sniffer receiver image (dbc) sniffer receiver attenuation (db) 51015 +110c +40c ?40c 14651-434 figure 234. sniffer receiver image vs. sniffer receiver attenuation, 5800 mhz lo, cw signal 3 mhz offset, 20 mhz rf bw, 30.72 msps sample rate ? 40 ?100 ?90 ?80 ?70 ?60 ?50 020 sniffer receiver dc offset (dbfs) sniffer receiver attenuation (db) 51015 +110c +40c ?40c 14651-435 figure 235. sniffer receiver dc offset vs. sniffer receiver attenuation, 5800 mhz lo, cw signal 3 mhz offset, ?35 dbm at 0 db attenuation, input power increasing db for db with attenuation, 20 mhz rf bw, 30.72 msps sample rate
ad9371 data sheet rev. a | page 56 of 60 0 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 02 0 sniffer receiver hd2 (dbc) sniffer receiver attenuation (db) 51015 +110c +40c ?40c 14651-436 figure 236. sniffer receiver hd2 vs. sniffer receiver attenuation, 5800 mhz lo, cw signal 3 mhz offset, ?35 dbm at 0 db attenuation, input power increasing db for db with attenuation, 20 mhz rf bw, 30.72 msps sample rate 0 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 02 0 sniffer receiver hd3 (dbc) sniffer receiver attenuation (db) 51015 +110c +40c ?40c 14651-437 figure 237. sniffer receiver hd3 vs. sniffer receiver attenuation, 5800 mhz lo, cw signal 3 mhz offset, ?35 dbm at 0 db attenuation, input power increasing db for db with attenuation, 20 mhz rf bw, 30.72 msps sample rate 0 ?45 ?35 ?40 ?30 ?25 ?20 ?15 ?10 ?5 ?65 ?20?25?30?35 ?40?45?50 ?55?60 sniffer receiver evm (db) sniffer receiver input power (dbm) +110c +40c ?40c 14651-438 figure 238. sniffer receiver evm vs. sniffer receiver input power, 5600 mhz lo, 20 mhz rf bw, lte 20 mhz uplink centered at dc, btc active, 30.72 msps sample rate 40 ?40 ?30 ?20 ?10 0 10 20 30 052 48 4440 36 3228 24 20 16 12 84 sniffer receiver gain (db) sniffer receiver attenuation (db) +110c +40c ?40c 14651-439 figure 239. sniffer receiver gain vs. sniffer receiver attenuation, 5800 mhz lo, cw signal 3 mhz offset, 20 mhz rf bw, 30.72 msps sample rate
data sheet ad9371 rev. a | page 57 of 60 theory of operation the ad9371 is a highly integrated rf transceiver that can be configured for a wide range of applications. the device integrates all the rf, mixed-signal, and digital blocks necessary to provide transmit and receive functions in a single device. programmability allows the two receiver channels and two transmitter channels to be used in tdd and fdd systems for 3g and 4g cellular standards. the observation receiver channel has two inputs for use in monitoring the transmitter outputs. this channel has a wide channel bandwidth that receives the entire transmit band and feeds it back to the digital section for error correction purposes. in addition, three sniffer receiver inputs can monitor different radio frequency bands (one at a time). these channels share the baseband adc and digital processing with the two orx inputs. the ad9371 contains four high speed serial interface links for the transmit chain and four high speed serial interface links shared by the rx, orx, and snrx channels (jesd204b, subclass 1 compliant), providing a low pin count and reliable data interface to a field-programmable gate array (fpga) or other custom integrated baseband solutions. the ad9371 also provides self calibration for dc offset, lo leakage, and quadrature error correction using an integrated microcontroller core to maintain a high performance level under varying temperatures and input signal conditions. firmware is supplied with the device to schedule all calibrations with no user interaction. the device includes test modes that allows system designers to debug designs during prototyping and optimize radio configurations. transmitter (tx) the ad9371 employs a direct conversion transmitter architecture consisting of two identical and independently controlled channels that provide all the digital processing, mixed signal, and rf blocks necessary to implement a direct conversion system. both channels share a common frequency synthesizer. the digital data from the jesd204b lanes pass through a fully programmable 96-tap fir filter with optional interpolation. the fir output is sent to a series of conversion filters that provide additional filtering and data rate interpolation prior to reaching the dac. each dac has an adjustable sample rate and is linear up to full scale. when converted to baseband analog signals, the in-phase (i) and quadrature (q) signals are filtered to remove sampling artifacts, and then the signals are fed to the upconversion mixers. at the mixer stage, the i and q signals are recombined and modulated onto the carrier frequency for transmission to the output stage. each transmit chain provides a wide attenuation adjustment range with fine granularity to help designers optimize snr. receiver (rx) the ad9371 contains dual receiver channels. each rx channel is a direct conversion system that contains a programmable attenuator stage, followed by matched i and q mixers that downconvert received signals to baseband for digitization. to achieve gain control, a programmed gain index map is implemented. this gain map distributes attenuation among the various rx blocks for optimal performance at each power level. in addition, support is available for both automatic and manual gain control modes. the receiver includes - adcs and adjustable sample rates that produce data streams from the received signals. the signals can be conditioned further by a series of decimation filters and a fully programmable 72-tap fir filter with additional decimation settings. the sample rate of each digital filter block is adjustable by changing the decimation factors to produce the desired output data rate. observation receiver (orx) the orx operates in a similar manner to the main receivers. each input is differential and uses a dedicated mixer. the orx inputs share a baseband adc and baseband section; therefore, only one can be active at any time. the mixed-signal and digital section is identical in design and operation to the main receiver channels. this channel can monitor the tx channels and implement error correction functions. it can also be used as a general-purpose receiver. sniffer receiver (snrx) the sniffer receiver provides three differential inputs that can monitor different frequency bands. each input has a low noise amplifier (lna) that is multiplexed to feed a single mixer. the output of this mixer stage is multiplexed with the orx receiver mixers to feed the same baseband section. the snrx bandwidth is limited to 20 mhz. this receiver can also be used as a general- purpose receiver if the bandwidth and rf performance are acceptable for a given application. these receiver inputs also provide an lna bypass mode that removes the gain of the lna when large signals are present. note that no requirements for the lna bypass mode are included in table 1; performance specifications are only relative to the scenario in which the lna is enabled. clock input the ad9371 requires a differential clock connected to the dev_clk_in+/dev_clk_in? pins. the frequency of the clock input must be between 10 mhz and 320 mhz, and it must have very low phase noise because this signal generates the rf local oscillator and internal sampling clocks.
ad9371 data sheet rev. a | page 58 of 60 synthesizers rf pll the ad9371 contains three fractional-n plls to generate the rf los used by the transmitter, receiver, and observation receiver. the pll incorporates an internal vco and loop filter that require no external components. the internal vco ldo regulators eliminate the need for additional external power supplies for the plls. these regulators only require an external bypass capacitor for each supply. clock pll the ad9371 contains a pll synthesizer that generates all of the baseband related clock signals and serdes clocks. this pll is programmed based on the data rate and sample rate requirements of the system. external lo inputs the ad9371 provides two external lo inputs to allow an external synthesizer to be used with the device. these inputs must be 2 the desired lo frequency. note that operation for the external lo option is limited to a maximum of 4000 mhz. one input pair is dedicated to the receiver lo generation circuit and the other input provides the input to the transmitter and observation receiver lo generation blocks. note that the observation receiver can obtain the lo from either the tx lo generator block or its own dedicated pll. when the sniffer channel is enabled, the lo for this block can only come from the dedicated internal observation channel pll. serial peripheral interface (spi) interface the ad9371 uses a spi to communicate with the baseband processor (bbp). this interface can be configured as a 4-wire interface with dedicated receive and transmit ports, or it can be configured as a 3-wire interface with a bidirectional data communications port. this bus allows the bbp to set all device control parameters using a simple address data serial bus protocol. write commands follow a 24-bit format. the first bit sets the bus direction of the bus transfer. the next 15 bits set the address where data is written. the final eight bits are the data being transferred to the specific register address. read commands follow a similar format with the exception that the first 16 bits are transferred on the sdio pin, and the final eight bits are read from the ad9371 , either on the sdo pin in 4-wire mode or on the sdio pin in 3-wire mode. gpio_x and gpio_3p3_x pins the ad9371 general-purpose input/output signals referenced to the vdd_if supply can be configured for numerous functions. some of these pins, when configured as outputs, are used by the bbp as real-time signals to provide a number of internal settings and measurements. this configuration allows the bbp to monitor receiver performance in different situations. a pointer register selects what information is output to these pins. signals used for manual gain mode, calibration flags, state machine states, and various receiver parameters are among the outputs that can be monitored on these pins. in addition, certain pins can be configured as inputs and used in various functions such as setting the receiver gain in real time. the gpio_3p3_x pins referenced to the vdda_3p3 supply are also included in the device and can provide control signals to the external components such as vgas or attenuators in the rf section that typically use a higher reference voltage. auxiliary converters auxiliary adc inputs (auxadc_x) the ad9371 contains an auxiliary adc that is multiplexed to four input pins (auxadc_0 through auxadc_3). this block can monitor system voltages without adding additional components. the auxiliary adc is 12 bits with an input voltage range of 0.05 v to vdda_3p3 ? 0.25 v. when enabled, the auxiliary adc is free running. software reads of the output value provide the last value latched at the adc output. auxiliary dacs (auxdac_x) the ad9371 contains 10 identical auxiliary dacs (auxdac_0 to auxdac_9) that can supply bias voltages, analog control voltages, or other system functionality. the inputs of these auxiliary dacs (auxdac_0 to auxdac_9) are multiplexed with the gpio_3p3_x pins according to table 7. the auxiliary dacs are 10 bits and have an output voltage range of approximately 0.5 v to vdda_3p3 ? 0.3 v and have a current drive of 10 ma. table 7. auxdac input pin assignments gpio_3p3 pin auxdac output gpio_3p3_9 auxdac_0 gpio_3p3_7 auxdac_1 gpio_3p3_6 auxdac_2 gpio_3p3_10 auxdac_3 gpio_3p3_0 auxdac_4 gpio_3p3_1 auxdac_5 gpio_3p3_3 auxdac_6 gpio_3p3_4 auxdac_7 gpio_3p3_5 auxdac_8 gpio_3p3_8 auxdac_9 jesd204b data interface the digital data interface for the ad9371 uses jedec standard jesd204b subclass 1. the serial interface operates at speeds of up to 6144 mbps. the benefits of the jesd204b interface include a reduction in required board area for data interface routing and smaller package options due to the need for fewer pins. digital filtering is included in all receiver and transmitter paths to provide proper signal conditioning and sampling rates to meet the jesd204b data requirements. examples of the digital filtering configurations for the tx and rx paths are shown in figure 240 and figure 241, respectively.
data sheet ad9371 rev. a | page 59 of 60 table 8. example rx/tx interface rates (two rx /two tx channels, maximum jesd lane rates) tx/tx synthesis/ rx bandwidth (mhz) tx input rate (msps) rx output rate (msps) jesd204b lane rate (mbps), two tx/two rx jesd204b (no. of lanes) tx/rx reference clock options (mhz) 100/250/100 307.2 153.6 6144 4/2 122.88, 153.6, 245.76, 307.2 75/200/100 245.76 122.88 4915.2 4/2 122.88, 245.76 20/100/40 122.88 61.44 2457.6 4/2 122.88, 245.76 20/100/20 122.88 30.72 2457.6 4/1 122.88, 245.76 i/q dac transmitter half-band filter 2 transmitter fir (interpolation 1, 2, 4) quadrature error correction digital gain jesd204b transmitter half-band filter 1 14651-125 figure 240. example tx data path filter implementation adc jesd204b receiver half-band filter 3 rfir (decimation 1, 2, 4) qec correction filter dc correction digital gain dec5 receiver half-band filter 2 receiver half-band filter 1 14651-126 figure 241. data rx data path filter implementation power supply sequence the ad9371 requires a specific power-up sequence to avoid undesired power-up currents. the optimal power-on sequence starts the process by powering up the vdig and the vdda_1p3 (analog) supplies simultaneously. if they cannot power up simultaneously, the vdig supply must power up first. the vdda_3p3, vdda_1p8, and jesd_vtt_des supplies must then power up after the vdig and vdda_1p3 supplies. note that the vdd_if supply can power up at any time. it is also recommended to toggle the reset signal after power has stabilized prior to configuration. follow the reverse order of the power-up sequence to power-down. note that vdda_1p3 refers to all analog 1.3 v supplies including the following: vdda_bb, vdda_clksynth, vdda_txlo, vdda_rxrf, vdda_rxsynth, vdda_rxvco, vdda_rxtx, vdda_txsynth, vdda_txvco, vdda_calpll, vdda_snrxsynth, vdda_snrxvco, vdda_clk, and vdda_rxlo. jtag boundary scan the ad9371 provides support for a jtag boundary scan. there are five dual-function pins associated with the jtag interface. these pins, listed in table 9, are used to access the on-chip test access port. to enable the jtag functionality, set the gpio_0 through gpio_3 pins according to table 10 depending on how the desired jesd204b sync pin (that is, syncinb0+, syncinb0?, syncinb1+, syncinb1?, syncboutb0+, or syncboutb0?) is configured in the software (lvds or cmos mode). pull the test pin high to enable the jtag mode. table 9. dual-function bo undary scan test pins mnemonic jtag mnemonic description gpio_4 trst test access port reset gpio_5 tdo test data output gpio_6 tdi test data input gpio_7 tms test access port mode select gpio_18 tck test clock table 10. jtag modes test pin level gpio_0 to gpio_3 description 0 xxxx 1 normal operation 1 1001 jtag mode with lvds jesd204b sync signals 1 1011 jtag mode with cmos jesd204b sync signals 1 x means dont care.
ad9371 data sheet rev. a | page 60 of 60 outline dimensions compliant to jedec standards mo-275-ggab-1. 03-02-2015-a 0.80 0.80 ref 0.44 ref a b c d e f g 9 10 11 121314 8 7 5 642 31 bottom view 10.40 sq h j k l m n p detail a top view detail a coplanarity 0.12 0.50 0.45 0.40 ball diameter seating plane 12.10 12.00 sq 11.90 a1 ball pad corner 1.27 1.18 1.09 7.755 ref 8.165 ref 0.91 0.84 0.77 0.39 0.34 0.29 pkg-004569 a1 ball corner pin a1 indicator figure 242. 196-ball chip scale package ball grid array [csp_bga] (bc-196-12) dimensions shown in millimeters ordering guide model 1 temperature range package description package option AD9371BBCZ ?40c to +85c 196-ball chip scale package ball grid array [csp_bga] bc-196-12 AD9371BBCZ-reel ?40c to +85c 196-ball chip scale package ball grid array [csp_bga] bc-196-12 adrv9371-n/pcbz evaluation board, 2600 mhz matching circuits adrv9371-w/pcbz evaluation board, 300 mhz to 6000 mhz matching circuits 1 z = rohs compliant part. ?2016 analog devices, inc. all rights reserved. trademarks and registered trademarks are the prop erty of their respective owners. d14651-0-11/16(a)


▲Up To Search▲   

 
Price & Availability of AD9371BBCZ

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X